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Three-Dimensional Triangulation 
with Satellites 

HellmutH. Schmid 

ABSTRACT.-Geometric satellite triangulation is an application of analytical photogram­
metry. In the World Net Project, recently completed, passive satellites were photo· 
graphed against the star background from 45 globally distributed stations and the 
resulting directions were combined to determine three-dimensional Cartesian coordinates 
for each. This volume presents, in detail, the rationale of this method together with a 
description ·of the equipment and, in part 2, the mathematical background of the 
computation programs used in the adjustment of the observed ·data. Part 3 gives 
results of the triangulation project and an evaluation of these results from the standpoint 
of error theory. 

l. FOUNDATIONS OF SATELLITE GEODESY 
AND THE CREATION OF WORLDWIDE 

GEODETIC REFERENCE SYSTEMS 
1.1 Geometric and Geophysical Aspects of 

Satellite Geodesy 
Artificial satellites in near-Earth orbits have 

contributed to the field of geodesy a new tech­
nique which, theoretically speaking, is capable of 
completely reorienting the methods and proce­
dures of the geodetic discipline. Application of 
newly developed methods of precision measure­
ments in satellite triangulation constitute, in a 
practical sense; a reformation in the domain -of 
classical geodetic field operations [1]. 

Without entering here into questions concerning 
the dividing line between geodesy and geophysics, 
it can be stated that the fundamental problem of 
geodesy is the mathematical description of the 
Earth's gravity field together with the determina­
tion of the geometry of the physical surface of the 
Earth, With unambiguous correspondence between 
the Earth-fixed coordinate systems or datums and 
the spherical coordinate system for a given epoch 
that serves as a frame of reference for metric 
astronomy. With satellite geodesy it is possible to 
find a synoptic solution to th~ fundamental prob­
lem, i.e., with reference to the whole Earth. 
Furthermore, triangulation with satellite~ in r.on-

1 

junction with position and time determinations of 
satellite orbits, eventually provides the necessary 
link between the geometric and geophysical meas­
uring concepts of geodesy. 

Thus, with the aid of satellite geodesy it be­
comes possible to undertake the geometric de­
scription of the surface and the analytical descrip­
tion of the gravity field of the Earth by means of 
worldwide measuring systems, and to derive re­
sults in the form of three-dimensional models 
based on a minimum of a priori hypotheses. 

These mathematical models then represent the 
frame of reference into which one can fit existing 
geodetic results from the various local datums, as 
well as all future geodetic measurements. The 
relevant adjustment should not confine itself to the 
limited (in practice) classical concept of the treat­
ment of accidental errors. With the aid of a 
generalization of the Gaussian algorithm it must 
take advantage of the ~increasing knowledge de­
rived from interdisciplinary research concerning 
the various geophysical parameters involved. It 
must also include the corresponding variance­
covariance matrices. 

From a formalistic mathematical point of view, 
the significance. of artificial satellites for geodesy 
consists in the ability to express the time-position 
curve of the orbit of a close-to-Earth satellite in 
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terms of functions of certain parameters which, in 
turn, give information with respect to geometric 
and geophysical properties of the Earth and its 
surrounding space. In this development the quan­
tities describing the gravitational field are of prime 
importance to gravimetry; the remainder of the 
geophysical forces affecting the orbit or arising 
from the satellite itsel~ are treated as perturbation 
sources. 

The parameters appearing in the mathematical 
simulation of the satellite orbits are determined · 
quantitatively by setting up observation equations 
that functionally relate the measurements made for 
the orbit determination with the parameters de­
scribing the orbit. It is then apparent that, in 
addition to these orbital parameters, these equa­
tions will involve the position coordinates of the 
Earth-fixed observation stations which, in the geo­
physical content of the problem, represent the 
position of these stations relative to the Earth's 
center of mass. Assuming a sufficiently large 
number of optimally distributed observations, it is 
possible to determine from the cOrresponding 
adjustment not only the geophysical parameters 
affecting the orbit but also the geocentric parame­
ters of the observing stations. This presents the 
opportunity of a simultaneous solution of the 
geometric and gravimetric problems of geodesy in 
~ worldwide frame. 

From a purely theoretical standpoint, this attrac­
tive train of thought has found great appeal among 
astronomers and geophysicists in particular and 
has already led to impressive results and new 
insight [2]. Being more intimately connected with 
triangulation measurements proper, however, the 
measurement engineer and, in particular, the 
practicing geodesist will have certain reservations, 
because the relatively large number of parameters 
appearing in the complex system of eqnations of 
such an adjustment are all more or less strongly 
correlated. In direct consequence of the simultane­
ous solution there exists, first of all, correlation 
among the various parameters of the same type, 
e.g., the coefficients of the harmonic functions 
describing the gravity field. In addition, there is 
statistical -dependence between the gravimetric 
quantities and the geophysical parameters intro­
duced to describe certain orbital perturbations. 
Also, the coordinates of the observing stations 
introduced into the solution and adjusted together 
with the other parameters are not only correlated 
among themselves but also with these nongeomet­
ric quantities. In practice, the number of observa.:. 
tions as well as their distribution in time and space 
leaves much to be desired, which serves only to 
amplify these correlations. 

Even When, by using a large-capacity electronic 
computer, it is possible to unite a very large 
number of observations in a single solution, it is 
important not to overlook the fact that the geome­
try of the observing stations obtained from such a 
solutiOn does not necessarily represent actual 
spatial relations. While the computed parameters 
in their entirety are well suited to describe the 
geometry of the satellite orbits, within the limits of 
accuracy of the original observations, the possibility 
nevertheless exists that an isolated group of par­
ameters such as the station coordinates may have 
only limited accuracy. Their significance must be 
judged in the light of the underlying geophysical 
and astronomical hypotheses. In short, the geome­
try of the observation stations is prejudiced by the 
specific properties of the mathematical model 
chosen to simulate the geophysical-dynamic nature 
of the satellite orbit. 

This state of affairs also explains why, despite 
the initial lack of interest in a purely geometric 
solution in satellite geodesy, a worldwide three­
dimensional satellite triangulation is now in prog­
ress. 

This in no way lessens the significance of the 
geophysical solution. On the contrary, dynamic 
satellite geodesy gains thereby. Once the three­
dimensional geometry of a sufficiently large num­
ber of points on the Earth"s surface has been 
established with a purely geometric solution, based 
only on Euclidean (flat space) geometry and the 
Right Ascension-Declination System of metric as­
tronomy, orbital observations from these stations 
can be used for the exclusive purpose of determin­
ing geophysical parameters. Such a system will not 
require the computation of station coordinates in 
the adjustment. 

Thus the number of unknowns to be determined 
from a given, available set of observations is 
reduced. This in itself is a desirable objective but, 
in addition, correlation is. eliminated betw€en the 
geometry and the geophysics, at least with respect 
to the station coordinates and the orbital elements. 

Given the resnlts of the geometric solution, the 
opportunity is presented, by way of a purely 
geometric satellite orbit determination, to ascertain 
the geometrical shape of the surface of the oceans 
by using laser and radar techniques to measure 
the distances between the satellite and the ocean 
surface. The influence of weather and tides on the 
measured profiles can be eliminated with measure­
ments over a sufficiently long period of time. This 
would not only help to complete the presentation 
of the geometry of the physical surface of the 
Earth, but would also give a purely geometric 
(hence unconstrained by hypothesis) representation 
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of a large portion of a surface that would be a very 
good hut not rigorous approximation to the geoid. 
The objection that, considering the preceding 
comments on a purely geometric solution, the 
information content of the dynamic solution is not 
completely exhausted can be countered by seeing 
the eventual solution of the problem of satellite 
geodesy as a combinatioh of the separate, individ­
ual geometri~ and dynamic solutions. In such a 
solution, the station coordinates will no longer be 
treated as free variables for the dynamic solution 
but wiJl be introduced with their associated coVari­
ances from the geometric adjustment. 

This will be the real contribution of satellite 
geodesy to the principal geodetic mission. The 
problems of describing the Earth's gravity field 
and determining the geometry of the physical 
surface are solved in a consistent formulation, 
yielding optimal results from a geophysical-hypo­
thetical as well as from a metrological standpoint, 
with the geometric and geophysical concepts mu­
tua)ly supporting each other. The amalgamation of 
the outputs of geometric and dynamic satellite 
geodesy must in the end be consummated, from 
the theoretical as well as practical standpoint, by 
the inclusion of geodetic data measured on the 
surface of the Earth. This requirement seems 
necessary because, although satellite geodesy's sig­
nificant contribution to physical geodesy has been 
to open up the third dimensio·n in the investigation 
of the Earth's gravity field, the fact still remains 
that the essential tasks of geodesy are the determi­
nation of the geometry of the physical surface of 
the Earth and the representation of the gravity 
field in detail close to the crust [3]. 

1.2 Development and Organization of a Geodetic 
Satellite Program for the Creation of a Worldwide 

Geodetic Reference System 

The history of satellite geodesy and its theoreti­
cal development began with the implementation of 
an idea that had been, for decades, an intermedi­
ary goal for scientists concerned with rocket 
development. This goal was to increase the veloc­
ity of the rocket· to the point where it would 
balance the component due to gravity, and go into 
orbit around the Earth. This is shown schemati­
cally for a circular orbit in figure l. 

The realization of this technical goal with the 
launch of the first Russian artificial satellite and, 
shortly thereafter, of the first American satellite, 
created renewed interest among experts in the 
fields of astronomy and aeronomy in the theoreti­
cal problems concerned with the description of the 
track of a body of negligible weight orbiting around 

Horizontal 

Figure I.-Basic forces producing the satellite orbit. 

an oblate mass, specifically around the Earth. 
Because the classical theories and procedures of 
physical geodesy are inadequate to the solution of 
all these problems, it has become the practice to 
apply, almost exclusively, the classical principles 
of celestial mechanics together with theories and 
results from the fields of aeronomy and related 
geosciences. These, with the aid of rocket experi­
ments, had already made considerable advances in 
the subject. 

This development explains the dominating influ­
ence of dynamic satellite geodesy to this day; this 
factor also was reflected in the planning and 
execution of the first American geodetic satellite 
program. The basic requirement for the launch of 
the satellite for the first American geodetic experi­
ment, known as ANNA, and for the subsequent 
GEOS satellite program was compact construction 
and rotation-symmetric for111 to the highest possi­
ble degree. The resulting mass-to-cross-section 
ratio is designed to minimize the perturbing influ­
ence of the atmosphere and other geophysical 
forces such as solar radiation pressure, in order 
not to complicate unnecessarily the adjustment of 

·the orbit relative to the gravitational field. 
In order to be able to sense the essential 

components of the Earth's gravitational field while 
keeping perturbing influences within bounds, a 
problem intimately connected with that of assuring 
the satellite a •ufficiently long lifetime, the neces­
sary experiments are executed at heights of 1,000 
to 1,600 km above the Earth ami the nearly circu­
lar orbits are distributed over as wide a band of 
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inclination as possible. The equipment for this 
type of satellite is typical for its purpose. Determi­
nation of the orbit is accomplished with satellite­
borne instrumentation enabling the measurement 
of direct distances, distance differences, and di­
rections. All these observations are related to 
absolute time measurements. · 

At the present time the distance measurements 
are based on the measurement of time lag of 
individual pulses or of the phase differences of 
continuously emitted frequencies, while distance 
difference observations are based on the use of the 
Doppler effect. A distance measuring method 
promising increased absolute accuracy is being 
developed with laser techniques. To measure di­
rections, flashes of short duration-on the order of 
1/1000 s-are emitted in groups of 5 to 7 at 
intervals of a few seconds and repeated a number 
of times in the course of a single orbit. Repetition 
depends on the power source available, hut, on the 
whole, this method yields only few observations. 

While the observation of such flashes has some 
application in geometric satellite triangulation, the 
basic use is for the calibration of electronic 
measurement systems. 

Viewed in the light of the present state of 
development it is apparent that, in general, the 
program of dynamic satellite geodesy faces two 
complexes of questions requiring further study in 
planning for future geodetic satellite projects. 
From the theoretical side, for one, the question 
arises as to what extent the concepts derived from 
classical 'celestial mechanics and applicable to 
spherical fields are valid in the immediate vicinity 
of an oblate spheroidal mass: Of perhaps even 
greater significance are the questions regarding 
the validity of our concepts with respect to the 
various geophysical forces other than gravity that 
influence the orbit of an Earth satellite. So far as 
practical m.easuring techniques are concerned, 
assuming proper professional use of the equip­
ment, there is little left to be desired with respect 
to data density and interior accuracy of the 
electronic data. However, even when exercising 
care in the necessary time and spatial distribution 
of the measurements, there remains sufficient 
reason to suspect that even today occasional 
systematic errors creep in, not so much because of 
the lack of reliability in the electronic components 
as because of uncertainties in the corrections 
necessary to transform the velocity of light in 
vacuo, into the wave propagation velOcity existing 
at the time of observation. The frequencies cur.:. 
rently in use are particularly affected by periodic 
changes in the ionosphere. The_ possibility, men­
tioned above, of calibrating with light flashes by 

way of position and time determination offers little 
hope in a long term program if ouly for sighting 
reasons. Particularly ineffective in this connection 
have been the unsuccessful attempts to initiate an 
efficient and sufficiently extensive calibration pro­
gram· in which all the measuring methods to be 
used are examined systematically under typical 
observation conditions by simultaneous orbit ob­
servations from· previously and precisely surveyed 
observation sites. The current method of judging 
the metric accuracy of the various procedures 
from the internal accuracy of, at times, very 
arbitrarily selected series of observations, br to 
derive absolute accuracy from the differences 
between end results of measuring systems employ­
ing quite different techniques in measuring and 
adjusting, is generally unsatisfactory for the metro­
logical engineer and even more so for the geodes­
ist. 

In addition to GEOS satellites, used primarily 
for dynamic satellite geodesy, a balloon type 
satellite (PAGEOS) is used exclusively for geomet­
ric satellite triangulation within the framework of 
the present American geodetic satellite program. 
The PAGE OS balloon is similar in material and 
construction to the balloon satellite ECHO I; it is 
30 m in diameter, its casing is 0.013 mm thick, 
and it reflects sunlight specularly, unlike the 
ECHO II satellite whose somewhat thicker casing 
reflected more diffusely. PAGEOS (passive geo­
detic satellite) was launched June 23, 1%6, into a 
nearly circular, nearly polar orbit, with an average 
altitude of 4,200 km. Its launch established a 
suitable elevated target for worldwide satellite 
triangulation. The order of the stations in the 
worldwide triangulation network is listed in table I 
(cf. also figs. 44 to 49 and sec. 3.3). Part of the 
world net is shown in figure 2. 

The compromise in the distribution of the sta­
tions necessitated by logistic and political consid­
erations represents a good approximation to an 
optimal solution. The open mesh in the South 
Pacific Ocean is due to the lack of any kind of 
island, while the open space over Central Asia is 
political in nature. The optimal execution of world­
wide geophysical experiments depends ultimately 
on whether the political world will come to the 
recognition that worldwide cooperation is required 
to enrich our geophysical and geodetic knowledge. 
In this sense, it is gratifying to see that the first 
worldwide geometric satellite triangulation under 
the technical supervision of the U.S. Coast and 
Geodetic Survey' is a program free of any kind of 
security restriction, whose results will be accessible 
to everyone. 

1 Now National Ocean Sun•ey. 
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TABLE 1.-W orld net stations 

Station Station name 
No. 

001 Thule, Greenland, Denmark ----------------------------------------------------------
002 Beltsville, Maryland, USA ------------------------------------------------------------
003 Moses Lake, Washington, USA ------------------------------------------------------
004 Shemya, Alaska, USA --------------------------------------------------------------
006 Tromse, Norway ______________ --------____ ------____ ------____________________ ---~--

007 Lajes AFB, Terceira, Azores --------------------------------------------------------
008 Paramaribo, Surinam ----------------------------------------------------------------
009 Quito, Ecuador --------------------------------------------------------------------
011 Maui, Hawaii, USA ------------------------------------------------------------------
012 Wake Island, USA ------------------------------------------------------------------
013 Kanoya, Kyushu, Japan --------------------------------------------------------------
015 Mashad, Iran -·---------------------------------------------------------------------
016 Catania, Sicily, Italy ----------------------------------------------------------------
019 Villa Dolores, Argentina ------------------------------------------------------------
020 Easter Island, Chile ----------------------------------------------------------------
022 Pago Pago, Samoa, USA ------------------------------------------------------------
023 Thursday Island, Australia ----------------------------------------------------------
031 Invercargill, New Zealand ------------------------------------------------------------
032 Perth, Australia __________________________ -------_________ ---------_________ --------

038 Revilla Gigedo Isl., Mexico ----------------------------------------------------------
039 Pitcairn Island, UK ------------------------------------------------------------------
040 Cocos Island, Australia -------------------------------··------------------------------
042 Addis Ababa, Ethiopia --------------------------------------------------------------
043 Cerro Sombrero, Chile --------------------------------------------------------------
044 Heard Island, Australia --------------------------------------------------------------
045 Mauritius, Mascarene ----------------------------------------------------------------
047 Zamboanga, Philippines--------------------------------------------------------------
050 Palmer Station, Antarctica, USA ------------------------------------------------------
051 Mawson Station, Antarctica, Australia ------------------------------------------------
052 Wilkes Station, Antarctica, Australia --------------------------------------------------
053 McMurdo Station, Antarctica, USA --------------------------------------------------
055 Ascension Island, UK ---------------------------------------------------'-------------
059 Christmas Island, USA --------------------------------------------------------------
060 Culgoora, Australia -------------------------------~----------------------------------
061 South Georgia Island, UK ------------------------------------------------------------
063 Dakar, Senegal --------------------------------------------------------------------
064 Ft. Lamy, Chad ~-------------------------------------------------------------------
065 H ohenpeissenberg, Germany _________________________________________________ -----__ 

067 Natal, Brazil ------------------------------------------------------------------------
068 Johannesburg, South Mrica -------.---------------------------------------------------
069 Tristan da Cunha Island, UK --------------------------------------------------------
072 Chieng Mai, Thailand ----------------------------------------------------------------
073 Diego Garcia, Chagos, Mauritius ------------------------------------------------------
075 Mahe, Seychelles, UK --------------------------------------------------------------
111 Wrightwood, California, USA -------------------------------------------------:-------

Latitude 
<t>• 

76.5 N 
39.0 N 
47.2 N 
52.7 N 
69.7 N 
38.8 N 

5.5 N 
0.1 s 

20.7 N 
19.3 N 
31.4 N 
36.2 N 
37.4 N 
31.9 s 
27.2 s 
14.3 s 
10.6 s 
46.4 s 
31.9 s 
18.7 N 
25.1 s 
12.2 s 
9.0 N 

52.8 s 
53.1 s 
20.4 s 
6.9 N 

64.7 s 
67.6 s 
66.2 s 
77.8 s 
8.0 s 
2.0 N 

30.3 s 
54.3 s 
14.7 N 
12.2 N 
47.8 N 
5.9 s 

25.9 s 
37.0 s 
18.8 N 
7.3 s 
4.7 s 

34.4 N 

5 

Longitude 
A• 

68.5 w 
76.8 w 

119.3 w 
174.1 E 
18.9 E 
27.1 w 
55.2 w 
78.4 w 

156.3 w 
166.6 E 
130.9 E 
59.4 E 
15.0 E 
65.1 w 

109.4 w 
170.7 w 
142.2 E 
168.3 E 
116.0 E 
111.1 w 
130.1 w 
96.8 E 
38.7 E 
69.2 w 
73.7 E 
57.7 E 

122.1 E 
64.4 w 
68.0 E 

110.6 E 
166.7 E 
14.3 w 

157.4 w 
149.6 E 
36.5 w 
17.5 w 
15.0 E 
11.0 E 
35.4 w 
27.7 E 
12.3 w 
99.0 E 
72.5 E 
55.5 E 

117.7 w 

The triangulation method based on photogram­
metric pnnciples is described in detail in chapter 
2. 
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Bezugssystems," Wild-Heerbrugg, 50-Jahi­
Festschrift (Satellite Geodesy-a method for 
the establishment of a worldwide geodetic 
reference system. Wild-Heerbrugg publica­
tion honoring the 50th anniversary of the 
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Figure 2.-Portion of the world net showing ties between four 
continents bordering the Atlantic Ocean. 

2. GEOMETRIC SOLUTION OF 
SATELLITE GEODESY 

2.1 Introductory Considerations 
In the classical treatment of geometric geodesy, 

i.e., that part of geodesy that deals with the 
derivation of rigorous geometric results, difficulties 
arise from the fact that the measured quantities 
cannot be rigorously related to the geometric 
model to be established. Physical influences are 
responsible for this dilemma. The so-called meas­
urements of· horizontal. and vertical angles are 
vitiated to an unknown extent by systematic 
influences such as anomalies in the gravity field 
and refraction. The reduction of base line meas­
urements is, in principle, similarly affected. 

In addition, the classical method of triangulation 
is forced to adopt a number of complex postulates 
whose geometric content is based on certain 
hypotheses. A typical example is the present day 
correction methods generally known as "isostatic 
reduction procedures." The physical principles 
underlying these procedures are the assumption of 
homogeneity and hydrostatic equilibrium of the 
masses within the Earth's crust. The resulting 
corrections to all geodetic observations will preju­
dice the end result in favor of Clairaut's theory. 
Aside from the physical assumptions, an unavoida­
ble characteristic of classical geodetic triangulation· 
is the practical limitation of sight length between 
points on or near the surface of the Earth. Not only 
are such geodetic triangulations incapable of mak-

ing intercontinental connections but the first order 
nets must be pieced together with an excessive 
number of individual arcs. The disadvantage of 
this method arises not so much from the large 
number of stations involved as from the fact that 
accuracy is impaired by error propagation, espe· 
cially in extensive nets. 

As a consequence geodetic theory has developed 
complex methods of adjustment designed to elimi­
nate the contradictions in the data by iteration, 
permitting the results of partly geometric and 
partly geophysical adjustment operations to inter­
act until all results become internally consistent. 

Although attractive from a theoretical stand­
point, such methods have practical limitations. For 
this reason a purely geometrically defined, three­
dimensional, worldwide, geodetic reference system 
is desired in order to transcend the shortcomings 
of the classical geodetic triangulation method. 
Moreover such a worldwide geometric solution is 
superior to a mere connection of the various 
geodetic datums which has at times been called 
the purpose of satellite geodesy. The geometrically 
defined reference system will make possible a 
more significant dynamic-physical analysis of 
measured satellite orbital perturbations and thus 
contribute to the solution of those problems which 
have to do with the location of the Earth's mass 
center and the description of gravity anomalies on 
or near the surface of the Earth as needed for the 
study of the physical structure of the crust as well 
as for the computations of the orbit of ballistic 
missiles flying in the immediate vicinity of the 
Earth. 

The significance of a three-dimensional triangu­
lation method, emphasized repeatedly in the re­
cent history of geodesy, becomes especially appar­
ent in connection with the field of satellite geod­
esy, which, because of its geometric and geophysi­
cal aspects, demands a three-dimensional solution. 

Perhaps the greatest significance of geometric 
satellite triangulation, however, lies in the fact that, 
for the first time in the history of geodesy, with this 
method there exists the possibility for the creation of 
a world-wide three-dimensional reference system 
supported by a minimum of a priori hypotheses, in 
particular without reference to either th~ magni­
tude or direction of the force of gravity. 

Establishing geometric correspondence among a 
number of selected, nonintervisible points of the 
physical surface of the Earth can 'be accomplished 

. with spatial triangulation by means of auxiliary 
targets elevated sufficiently above the Earth's 
surface. 

The generation of light signals visible over great 
distanc~s is possible by means of artificial satel­
lites. Because of the high velocity of such targets, 
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observation of directions to them can, at present, 
be made only with precision photogrammetric 
cameras. Because of the physical and chemical 
properties of the photogrammetric measurement 
components, the absolute accuracy as well as the 
reproducibility of the observation conditions in this 
method are limited. To get observational results 
with maximum absolute accuracy, the adjustment 
of· the photogrammetric measurements must be 
based on a method of interpolation. 

A suitable reference system into which an 
elevated target can be intercalated is obviously the 
right ascension":'declination system of metric as~ 
tronomy. This system is all the more attractive 
from the geodetic point of view because one of its 
axes is parallel to the Earth's axis of rotation. A 
large number of fixed stars whose coordinates are 
tabulated in catalogues are available as reference 
points. These control points being practically at 
infinite distance, it follows that their direction 
coordinates are in!?ensitive to a parallel displace­
ment of the observer and hence can not be used 
for scale determination. It is therefore necessary 
to determine the scale of the satellite triangulation 
independently, e.g., by measuring the distance 
between two adjacent stations. As will be shown in 
section 3.3, it is necessary to carry out such scale 
determinations in several portions of the worldwide 
triangulation net. 

2.2 Geometric Foundations 
We turn our attention now to a three-dimen­

sional method of triangulation that is based on 
direction measurements and is designed to deter­
mine the coordinates of nonintervisible triangula-
tion stations. " 

The relevant geometric solution is not new. In 
faot there is litde room for originality in applying 
photogrammetry to ballistic and related problems. 
The use of star photography for the calibration of 
photogrammetric cameras is a proven method, 
especially with astronomers. The use of star 
images to orient photogrammetric cameras and the 
corresponding triangulation of additionally photo­
graphed target points was used successfully in the 
1930's by Hopmann and Lohmann [I] for track­
ing missiles before this method was applied in the 
development of the V-2 rocket at Peenemiinde, 
Germany, and, subsequently, in various other 
countries. 

Vaisala proposed the same principle in the 
reports on the meetings of the Finnish Academy of 
Sciences, 1946, under the tide "An Astronomical 
Method of Triangulation" [2]. 

There are several ways to present the geometric 
principles of this triangulation method. Vaisala's 

Figure 3.-Geometry of satellite triangulation. 

Figure 4.-Geometry of satellite triangulation. 

proposal contains a lucid, geometric explanation. 
Two rays issuing from the end points of a given 
base line and directed at a common point define a 
plane in space whose orientation can be deter­
mined from the direction cosines of the rays. 
When two such planes have been fixed, the 
direction in space of the base line can be com­
puted as the intersection of the two planes. The 
principle involved is shown in figure 3. 

After two directions AB and AC (fig. 4) issuing 
from station A have been determined in this 
fashion, the shape and spatial orientation of· the 
station triangle ABC is fixed by intersecting AB 
and AC with a plane whose orientation is known 
from observing the satellite position S 5 from B and 
C. Thus 5 planes are necessary and sufficient to 
fix the shape and orientation of a station triangle. 
Each of these planes contains two stations and one 
point of the satellite orbit. Therefore, there are 5 
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positions of the orbit together with the positions of 
the three stations A, B, and C, or (5 + 3) X 3 = 24 
unknowns to be determined. 

Since each pair of simultaneous observations of 
a satellite position or, in other words, the determi­
nation in space of two intersecting lines, gives rise 
to 4 equations, there are in all 5 X 4, or 20 
equations of condition available. Hence 24 - 20, 
or 4 additional, independently determined geomet­
ric quantities are required for a complete solution 
of the triangle. The most obvious of the many 
theoretically available choices are the 3 coordi­
nates of one of the stations which, in principle, 
can be assumed arbitrarily, for example, as the 
origin of the coordinate system. It is equally 
logical to choose as the fourth assumption the 
length of one of the sides of the triangle, which 
fixes. the scale for the whole triangulation. For 
purposes of explaining the principle of satellite 
triangulation, it is sufficient to introduce this side 
length as the unit of length. 

It is interesting to note that three of the five 
necessary planes can be determined with a single 
pass of the satellite if the subpoint of the observed 
satellite lies near the middle of the station triangle 
(see fig. 5). For this case a unique solution can be 
obtained with the determination of (3 + 3) X 3, or 
18 unknowns from 7 X 2, or 14 available condition 
equations. Again, it is necessary to introduce four 
additional, independently determined geometric 
parameters. 

From the viewpoint of analytical photogramme­
try the geometric principle of satellite triangulation 
can be explained by identifying the unknown 
positions of the triangulation stations and the 
unknown orientations of the observing cameras 
with the corresponding conditions in classical 
aerial photogrammetry. The unknown orbital posi­
tions of the satellite correspond to the relative 
control points of the stereo model, and the stars 
play the role of absolute control points, with the 
restriction that they cannot furnish scale since 
they lie at an infinite distance. 

The geometric concept of photogrammetric sat­
ellite triangulation must, however, be interpreted 
in the light of the fact that, at each station, the 
stars (absolute control points) are used for the 
determination of the elements of the interior 
orientation needed for the reconstruction of the 
photogrammetric bundle, together with the de~er­
mination of the three rotation elements of the 
exterior ori~ntation. The condition of intersection 
of the rays resulting for each satellite image 
observed from mo!"e than one station is used 
exclusively to determine the three elements of 
translation of the exterior orientation. This circum-

Figure 5.-Simultaneous observation of satellite from three 
stations. 

vents·· the unfavorable correlation between the 
elements of rotation and translation that is typical 
in aerial triangulation, an advantage that is re­
flected in the favorable error propagation charac­
teristics of satellite triangulation (cf. sec. 3.3). 

The geometric content of satellite triangulation, 
in complete agreement with the corresponding 
concep~s in the general field of analytical photo­
grammetry, is thus based on a multitude of 
individual rays whose directions must be deter­
mined from the relevant photograms. Hence the 
idealized conditions must be satisfied; these are 
that the three points-objective (satellite), center 
of projection (triangulation station), and image 
(photographed satellite image)-lie on one straight 
line. This condition is the geometric basis for 
satellite triangulation, just as it is the necessary 
and sufficient criterion for any photogrammetric 
triangulation [50]. 

It is obvious that, after fixing the first station 
triangle in space, nothing prevents the addition of 
further stations as xertices of triangles adjacent to 
the first. Postulating the possibility of scale deter­
mination, either by direct measurement of a side 
of one of the space triangles or by simultaneous 
distance measurement from at least 4 stations to a 
satellite position, the positions of a number of 
points on tbe physical surface of the Earth can be 
determined in a homogeneous three-dimensional 
reference system. In practice the arrangement of 
the stations and, hence, the shape of the configu­
ration is to a great extent dictated by the geo­
graphical distribution of island• over the oceans. 

Aside from using the method to determine a 
worldwide geodetic reference system, the same 
technique can be used to establish the frames for 
continental triangulations which, on the b•sis of 
accuracies in the determination of directions at­
tained even today and of the basically favorable 
error propagation characteristic of satellite triangu­
lation, are equivalent or supenor to classical .u.rSL­

order nets, particularly where such nets cover 
extensive areas (cf. fig. 6). 
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Figure 6.-Densification network in North America. 

Judging by present technical standards, satel­
lites orbiting at altitudes below 1,000 km will 
probably not be used because of their limited life 
span. Thus, in consequence of the nearly linear 
decrease in triangulation accuracy with increased 
height (cf. 3.3), the practically acceptable shortest 
average distance between points of a continental 
satellite triangulation net should be 500 to 1,000 
km. 'Yithout changing the geometric principle, the 
descnbed method of satellite. triangulation be­
comes a type of. three-dimensional triangulation 
with elevated targets-although the influence of 
the physical parameters is different and not neces­
sarily more favorable from the standpoint of meas­
uring technique. The method uses present day 
capabilities to generate a large number of light 
flashes or future capabilities to burn pyrotechnic 
signals on airplanes that may soon be expected to 
fly at heights of 20 to 25 km. In addition to the 
theoretically desirable, three-dimensional charac­
ter o! the triangulation method, it will be a 
questiOn of economic feasibility whether such a 
technique will, in part, replace classical first order 
triangulation in certain areas of the Earth. 

Quite independendy of the measurements of the 
individual spatial triangulation' figures, the basic 
geometrical concept underlying the method of 
satellite triangulation requires, at least in princi­
ple, the simultaneously executed observations of 
directions to the target-in our case the satellite­
from at l.,ast two stations. Clearly, the require­
ment to mt:asure directions, rather than· merely 
angles, implies the necessity of orienting the 
observed bundle in each case relative to a 

uniquely defined system of reference. This is 
otherwise self evident in that our objective is to 
represent a consistent spatial reference system. 

A spatial coordinate system to which a direction 
to a target sufficiendy elevated above the horizon 
can be referred is the right ascension-declination 
system. 

This reference system surrounding the whole 
Earth is qualitatively as well as quantitatively 
suitable, and a great number of precisely meas­
ured reference points are readily available. Of 
especial significance to the photogrammetric men­
suration principle is the abundance of such abso­
lute control points. Because of the physical and 
chemical nature of its numerous components and 
procedures, the photogrammetric method can sat­
isfy the requirements for highest accuracy ouly if 
the corresponding observation and adjustment pro­
cedures are executed in a close~interval interpola­
tion process. 

We emphasize here, therefore, that the claim of 
satellite triangulation to produce results without 
the aid of physical hypotheses and practically free 
of systematic errors derives chiefly from the fact 
that photogrammetric direction determination in 
satellite triangulation operates not ouly with the 
aid of geometric interpolation within the recon­
structed photogrammetric bundle but represents 
equally an interpolation into the physical process 
of astronomic refraction (cf. 2.5). This also means 
that the absolute accuracy of photogrammetric 
satellite triangulation depends primarily on the 
quality of the right ascension-declination system, 
particularly on its freedom from systematic errors. 
Because of the importance of the· astronomic 
reference system to satellite triangulation, some 
relevant remarks on data processing in satellite 
triangulation will be made in the next section. 

2.3 Astronomical Reference System' 
In satellite triangulation, photographing the fixed 

stars serves a) to reconstruct and b) to uniquely 
orient the photogrammetric bundle in space. The 
problem of reconstructing the bundle is fundamen­
tally identical with the problem of calibrating a 
photogrammetric camera. The geometric 
interpretation of the relevant parameters is inde­
pendent of camera orientation. It would. therefore 
suffice to have the relative geometric arrangement 
of the images of the stars on a particular plate 
giyen in an a!:bitrary coordinate system. However, 
the deterniination of an unambiguous orientation 
for all the bundles of rays serving the triangulation 

2 For the proper interpretation of the computations in the fol­
lowing. it is necessary that the reader first study sec. 2. 7.1 and 
2.7.2. 

---·----------------------
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is predicated on the fact that all given control 
points (the totality of fixed stars used) are given in 
a uniquely defined reference system that can be 
uniquely transformed to an Earth-fixed coordinate 
frame. The right ascension-declination system of 
metric astronomy furnishes the metric basis for 
geometric satellite triangulation. The point of de­
parture is the apparent position coordinates of 
stars tabulated for a given epoch in star catalogues 
such as: "Apparent Places of (1535) Fundamental 
Stars" published by the Astronomiscbes Rechen­
Institut, Heidelberg; or the "General Catalogue" 
with approximately 33,000 apparent star positions; 
or, probably the most complete catalogue to date, 
the Smithsonian Astrophysical Observatory Star 
Catalog [3] in which over 250,000 stars and their 
apparent places are tabulated. 

The choice of stars selected for the purpose of 
satellite triangulation depends primarily on the 
accuracy of their coordinates. Stars with large 
proper motions should be avoided and double stars 
should not be used. To counteract the influence of 
spectral differences of the stars, a special lens is 
used (cf. sec. 2.6). Finally, the selection is limited 
by the star magnitude registered by the specific 
optical system and emulsion used. With the BC-4 
system and the Eastman Kodak emulsion 103 F in 
use today, stars of the 7th and 8th magnitude still 
produce good, measurable images over the entire 
plate. Using very bright stars at the same time as 
lower magnitude stars introduces the problem of 
the influence of relative, systematic errors in 
locating the centroid of the image. The existence 
of a magnitude effect, not negligible in astronomi­
cal measurements, has, with the focal length 
currently in use for satellite triangulation, not as 
yet been demonstrated quantitatively. 

In [3] the distribution over the celestial sphere 
with respect to right ascension and declination of 
the stars listed in the Smithsonian Catalogue is 
described from the standpoint used in the selec­
tion. 

Geometric satellite triangulation can at best, 
therefore, attain the accuracy of the astronomical 
reference system (cf. sec. 3.1). Hence, for a 
critical study of the theoretical accuracy of satel­
lite triangulation, the observation and adjustment 
procedures used in metric astronomy to establish 
sJar catalogues are of fundamental importance. 
However, within the limits of this presentation, it 
must suffice to refer to the literature 
[4,5,6, 7,8,9,10] on these highly specialized and 
complex procedures. 

But to understand geometric satellite triangula­
tion it is necessary to interpret correctly the 
qualitative (geometric) and quantitative (statistical) 

data listed in the star catalogues. Such 
interpretations are necessary to understand the 
reductions needed to transform the time and space 
dependent geometry of the individual photogram­
metric exposures into a homogeneous, geometric 
system. The problems arising here are basically 
the same as those faced in the reduction of 
astronomic-geodetic field observations. 

The star catalogues list for apparent places a 
pair of spherical coordinates for a specified epoch, 
right ascension a and declination 8. Their mean­
ings are indicated on the unit sphere in figure 7. 
Right ascension a has its origin at the intersection 
of the celestial Equator and the ecliptic (the 
equinox) and is measured toward the east along 
the Equator; the declination 6 is measured from 
the Equator along the (spherical) meridian, positive 
toward the North Pole. The specification that the 
catalogued values refer to a given epoch (generally 
the beginning of the tropical year 1950.0 in the 
newer catalogues) means that time dependent 
corrections must be added to the star coordinates 
before they represent the actual position at the 
instant of observation (in our case, the time of 
exposure). 

The reason for these corrections is found pri­
marily in the dynamics of the universe, although 
purely physical corrections must also be taken into 
consideration. Theoretical explanations are de­
scribed in detail in standard works on geodetic 
astronomy, e.g., references ll through 18. Never­
theless it seems useful to outline here, in terms of 
formulas, the sequence of corrections used. For 
one thing, this outline presents a computerized 
method designed to reduce the large number of 
star places, including circumpolars, needed in 
geometric satellite triangulation. For another, such 
a presentation helps to clarify the contribution of 
the individual corrections to the overall adjustment 
procedure of satellite triangulation and helps the 
reader to judge the technical and economical 
aspects involved. 

The following computations are for deriving, 
from the star catalogue data for a specific epoch, 
the unit' vector (see fig. 7) that designates the 
apparent geocentric direction of a star with refer­
ence to the true equinox and at the instant T of 
observation. The solution shown here is based on 
the method currently in use at the U.S. Naval 
Observatory. The pair of lower indices to the right 
of the .matrices designate respectively the equinox 
and the epoch to which the coordinates are 
referred. To begin with, the heliocentric unit 
vector x.,0, referred to the epoch and equinox of 
the catalog used, is computed with the catalog 
entnes a and 6. 
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Figure 7.-Astronomic reference systems. 

Xoo = [::1 = [ ~::; :~: :J (1) xJ 00 sm B 00 

Then the star coordinates are corrected for the 
star's proper motion. The correspondingp.z correc­
tion vector is computed, using the proper motion 
components in right ascension Po and in declina­
tion p;, listed in the catalog, and by differentiating 

the vector (1), sincep, =~~by definition, 

P:r = cos Bcos a -sin 8sin a 14 J [

-cos Bsin a -sin Bcos al [ 
0 cos 8 0 ,..., 00 

(2) 

[

-x 

= ~ -x,.x2 (1 - x~)-l ["" 1 -x,x, (1 - x~ti l 
(1 - x~)l o 14 o 

with /La and f.'s in radians. 
A second differentiation yields the components 

of the secular variations. The corresponding vector 
A, is then 

... = - u 2v -- where ... = ,.2 + ,.2 + u 2 (3) 
I""X r··-otn lA' r-.rt r-:r, r-.r3' 

In case the radial velocity of the stars is to be 
applied, (3) is ~ugmented to 

A,= - JL'Xoo- 0.000205?TV p, (4) 

in which TT is the star's parallax in seconds of arc 
and V the radial velocity of the star in km/s. The 
second term in (4) is quite small and needs to be 
considered for only a few stars. 

With (1), (2), and (3) or (4), the unit vector Xor 
referred to epoch T and the catalog equinox is 

[
1Lx1 Ax,] [ T J 

Xor = Xoo + 1Lz2 ~z2 ~T2 
f.Lz3 f.Lxa: 

(5) 

Expression (5) is the Taylor-Maclaurin expres­
sion of vector x in time to a second order. The 
time interval T is in tropical years or centuries, 
depending on the interval for which p., and p;, are 
listed in the particular catalog used. T includes the 
fraction T of the year in which the observation is 
made. Values for T are taken from the volume of 
[20] in question. The result (5) can be transformed 
for convenience in programming to 

( 
p.2T2) 

Xor = l - -
2
- x00 + (T - 0.00010257r VT)p, 

(6) 

The next step rotates the vector Xor from (5) or 
(6) in accordance with precession, so that the 
transformed rectangular coordinates are referred 
to the mean equinox for the beginning of the 
Besselian year T' nearest the date of observation. 
The transformation is 

Xr•r = R(-l, II, -z)Xor 
3 2 3 

(7) 

in which the rotation matrix has the following 
meaning: 

R(-,, II, -z) = R(-z)R(II)R(-') = 

[

c?s z 
s1n z 

0 

32 3 3 2 3 

-sinz 
cos z 

0 

0 
l 
0 

-sin' 001J 
cos' 

0 

-si~ II] 
cos 8 (8) 

The indices under the angles in the rotation 
matrices designate the axis around which the 
rotation takes place (for direction of rotation cf. 
2. 7.2.2). Using Newcomb's constants the rotation 
angles are · 

' = (2304'!250 + 1.396 T0)T+ 0?302 T2 + 0':018 T3 

z = ' + 0':791 T2 
II = (2004':682 - 0?853 T0)T - 0?426 T2 - 0?042 T3 

(9) 
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The geometric meaning of the angles is given in 
[21]. T 0 (in tropical centuries) is the interval 
between 1900.0 and ,the epoch of the catalog used. 
T, also in tropical centuries, is the difference 
between the Besselian year T' nearest date of 
observation and the epoch of the catalog. 

The vector of (7) is next corrected for annual 
aberration, fo~ which daily values are listed in 
[20]. Since these tabulated values are computed 
from the true motion of the Earth with reference to 
the mean equinox at the beginning of the Besselian 
year nearest the date for which they are published, 
they can be applied directly to this vector. The 
annual aberration corrections must be interpolated 
with first and second differences to the date of 
observation. The resulting constants -D, C, and 
C tan e in radian measure may be regarded as 
displacements of the rectangular coordinates. 
Thus, the position vector of a star for the epoch T, 
referred to the mean equinox T' and including the 
aberration is 

"<T'n = Xr•r + [ ~g J 
C tane 

(10) 

with the mean inclination of the ecliptic, 

<=23'26'44~840 - 46~850 T - 0'!003 T' + 0~002 T, 
(11) 

with T as 'above. 
The transformation (7) accounts for precession 

. up to the beginning of the Besselian year nearest 
the date of observation. An additional rotation is 
necessary to transform the position coordinates 
from the corresponding mean equinox to the true 
equinox at the time T of observation. 

With allowable neglect of terms of second and 
higher order which do not contain the factor tan ll 
one obtains 

"<m = R(B, A, - f)x,,.., 
I 2 3 

(12) 

where A, f and B are in radians and interpolated 
from [20] to second differences. The rotation 
matrix in (12) has the meaning 

R(B,A, -f)= R(-f)R(A)R(B) = 
1 2 3 3 2 1 

[

cos/ 
sin/ 

0 

-sin/ 
cos/ 

0 

[~ 

~l [co~ A 
{j sinA 

0 
1 
0 

0 
cosB 

-sin B 
si~BJ 
cosB 

or with sufficient accuracy: 

-si~A] 
cos A (13) 

R(B, A, -f)= [J 
1 2 a A 

-! 
1 

-B 

-(A+ B~ 
(B -Af) . 

1 
(14) 

The rectangular coordinates used up to this 
point are heliocentric and it is necessary to 
transform them to geocentric coordinates when­
ever the absolute parallax 1r appearing in the 
"General Catalogue of Trigonometric Stellar Paral­
laxes" [22] exceeds 0'!010. This last correction is 
obtained with 

[ 
-C sec •] 1r 

XTT = "<rn + -D C?S E k 
-D sme 

(15) 

with C, D, and E as in (10). The aberration 
constant k = 20'!496. The xTT vector indicates the 
apparent geometric direction to a star for the 
observation epoch and the corresponding true 
equinox. The corresponding apparent right ascen­
sion and declination are obtained with the inver­
sion of (1) from (15) as 

(16) 
ll = tan-'xaf(xf + xi)l 

For a computer program a convenient sequence 
of operations is obtained by combining the individ­
ual steps chosen in (6), (7), (10), (12), and (15). In 
connection with (1), (2), (3), (8), (9), (11), and (13) 
or (14), auxiliary computations are required using 
tabulated or, where necessary, interpolateq values . 
The geocentric directions computed with the rec­
tangular coordinates (15) or the orthogonal spheri­
cal coordinates (16) can be adopted without change 
as topocentric directions, since the stars are 
sufficiently remote, i.e., no additional. parallax 
correction is needed. The situation is shown in 
figure Sa, where the basically geometric astro­
nomic reference system x1,2,3 is shown, in parallel 
displacement to an arbitrary point of the Earth's 
surface on a uuit sphere surrounding this point. 

The orientation of this assumed spatially station­
ary, astronomic system differs, therefore, from the 
orientation of a geocentric coordinate system y 1,2,3 
that rotates with the Earth by an angle 110 , that 
corresponds to this rotation and is formed by the 
plane of the Earth-fiXed null meridian of longitude 
(;1.' = 0) and the plane of the astronomic null 
meridian (a = 0). The geometrical meaning of the 
angle 110 , is apparent from figure 9. It is the 
sidereal time of the null meridian and is computed 
from universal time (mean Greenwich time) by 
converting mean to sidereal time, i.e., by multipli­
cation with the ratio 366.2427/365.2427, or 
1.00273791, and adding to 0.0 ,. The angle 1100, is 
listed in [20] for 0" UT of each day. The introduc-
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tion of universal time for the instant of observation 
makes it necessary to raise certain questions in 
connection with th.e measurement of time. This 
train of thought is presented in sec. 2.4. 

By studying the further steps in the reduction, it 
will become apparent that it is advantageous to 
change the space orientation of the astronomical 
reference system x 1,2 ,3 in a way to simplify the form 
of certain corrections. 

The first is diurnal aberration. In consequence 
of the daily rotation of the Earth-fiXed observation 
stations with respect to the right ascension-decli­
nation system, assumed stationary, we must, in 
addition to the annual aberration caused by the 
Earth's movement around the Sun, consider a so­
called diurnal aberration. This is a function of the 
true pOsition (c{;', A') of the observation site on the 
Earth and the angle 80 , (fig. 8a), as well as of the 

direction of observation, i.e., of the a and 6 of the 
star. After turning the x system of figure Ba 
through the angle 8 about the x3 axis (cf. fig. 9) the 
resulting x{ direction lies in the meridian plane of 
the observation site and x~ points to the east, i.e., 
in the direction of the linear velocity vector Vrp• of 
the Earth's rotation. 

Figure lOa shows a unit circle in the plane that 
contains the unit vector xQ (direction to the star) 
and its x 2 component, and hence also the Vrp• 

vector. 

is 
from this the lel)gth of the aberration vector A 

IAI "•' =-cos 'Y 
c 

(17) 

in which Vrp• is the linear velocity of the Earth's 
rotation if:' latitude cp', and c is the velocity of light. 
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Figure 9.-0rientation of rotating astronomic system relative to 

assumed fixed system. 

The components of fl. in the x;,,,3 directions (cf. 
fig. lOa and b and eq. (73)), are 

(18) 

with k' = v •• fc, or sufficiently close for the purpose 

k' = 0':319 cos 'I'' (19) 

To compute (18) we must first rotate the x 
system to which the xTT vector (15) is referred 
through the angle 8. This results in 

where 

x;., = R(8 )xTT 
3 

[ 

cos 8 
R(8) = -sin 8 

3 0 

sin 8 
cos 8 

0 

(20) 

~] (21) 

The unit vector xT.r corrected for diurnal aberra­
tion is, with (18) and (19) 

x/m = x;T + [~X~ ~;2~] • k' 
-x~ · x~ 

(22) 

To account for astronomic refraction a further 
correction is necessary. Since astronomic refrac­
tion is most conveniendy computed as a function 
of the geometric zenith distance z of the observed 

x; 

~~ Components l!., and ll.3 of the 

0 .,.<>- Aberration Vector lJ. 
""-c;. .... ~.q,. 

\"%. ""o..,...~");.~· 
Unit Circle at ~ in the ~ ...,...s~.., 
Plane Containing v4J and \'9- -:..o~ b) 
the Observed Direction \~ ;.:.q,.~-;,. 
to the Stor. \~ ~ ... 

\"='_ x-~ 
\" o.) \'!); 

\ 
.t;I.a,8 

Figure 10.-Components of the aberration vector A. 

direction, the x;., system (20) is rotated through 
(90' - ,P) about its x; axis into the local rectangu­
lar y' system (see fig. 8b). The resulting unit 
vector from (22) is 

where 

y' = R(90' - 'l'')x',m 
2 

[ 
sin 'I' ' 0 -co. s

0
'1' .'] 

R(90' -'I'') = 0 1 
2 

COS tp' 0 Sin tp 

and, correspondingly, with (16) from (23) 
azimuth A (positive from south through west) 
zenith distance z are 

A = tan_1 y~ 
y; 

- (:y;' + r?Y. z =tan •~C....:...f.'~ 
y~ 

(23) 

(24) 

the 
and 

(25) 

The astronomic refraction roo is next computed 
on the basis of the mathematical model described 
in sec. 2.5, as a function of the weather data 
obtained during the observation (air temperature, 
pressure, relative humidity, etc.). The vector y' of 
(23) is corrected for this refraction, in accordance 
with (74) of sec. 2.7.2 (cf. also (42)) giving 

-cos(z- ';)cos A 

y/ =y' + cos ( z - ~) sin A 2 sin r; (26) 

sin( z- ';) 
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When r ~ is small in a differential sense relative 
to the expected limit of accuracy, (26) simplifies in 
accordance with (73) to 

[ 
-y;y; J 

Yr' = Y1 + -y;y~ r ~ (l - y~2)-i 
(I - y;2 

(27) 

where roo is in radians. 
Corresponding spherical coordinates can be ob­
tained from (26) or (27) with (25). 

More suitable for further development of our 
problem are the rectangular coordinates e and 1) in 
the plane tangent at the zenith of the observer to a 
unit sphere, as shown in figure 24 of sec. 2. 7.2. 
These coordinates are commonly designated stand­
ard coordinates in astronomy and are computed 
with the expressions on the left of (26) or (27) in 
accordance with (66) and (67) of sec. 2.7.2.1: 

g, = y;fy; 
7J r = y~/y~ 

Hence ( cf. (64) and (65) sec. 2. 7 .2.1) 

A = - tan-1 1) ,!g, 
z, = tan -1 (g; + 1) r')i 

(28) 

(29) 

The correction steps of the preceding para­
graphs can again be combined in a sequence of 
steps convenient for programmed computation. 
From (20), (22), (23) anrJ (26) or (27), results the 
direction vector y/ in the local coordinate system 
as derived from the xTT vector (15) in the astro­
nomic x system. These directions represent a 
stationary oriented bundle of rays at the point of 
observation for the instant T (expressed in- UT) of 
the observation. The rays forming this bundle 
pierce the tangent plane of the unit sphere at the 
zenit~ of the observing station in points whose 
locat.ions are defined by their coordinates gr, TJr· 
The ~, "') system corresponds in its orientation to 
they' system. By obtaining the coordinates g, 1), 

therefore, we have transformed the spherical coor­
dinates, originally tabulated in a star. catalogue for 
a specified epoch, into three-dimensional rectangu­
lar coordinates so that all the reference points lie 
in a plane tangent to the unit sphere. The 
coordinates assigned to these points with reference 
to the center of the sphere as origin and axes 
parallel to the directions yL2.a are therefore (g" 
1Jr, + I). 

The images of the stars corresponding to these 
control points lie in the plane of the photographic 
plate on which their position is determined with 
reference to an arbitrarily oriented, plane, rectan­
gular coordinate system (x, y) introduced into the 
plate plane (cf. fig. 29 in sec. 2. 7.2.5). There 
remains the problem of establishing the projective 

correspondence between the two sets of points on 
the two planes, one set defined by coordinates ( er> 
'l'Jr), the other by corresponding image coordinates 
(x, y). This principal problem of the photogrammet­
ric measuring technique is solved by the applica­
tion of the principles of generalized central per­
spective. The mathematical model for this solution 
is described in detail in sec. 2.7.3. For the 
present, it is only necessary to accept the fact that 
this st~p establishes, either directly or indirectly, 
the onentation of the photogram with respect to 
the coordinate system in which the control points 
are given, in our case with reference to the local y' 
system. Likewise all the derived rays from this 
oriented bundle, such as the directions to the 
additionally photographed individual satellite posi­
tions (cf. sec. 2. 7.5.1), are obtained in this coordi­
nate system. Since in the subsequent triangulation 
(cf. sec. 2. 7.5.2) all directions from the various 
stations must be referred to a common coordinate 
system, one can rotate the locally introduced 
coordinate systems to make their axes parallel to 
those of the common system chosen for the spatial 
triangulation before the photogrammetric reduction 
of the individual single cameras. This rotation can 
also be effected after the reduction of the single 
camera. The rotation matrices that determine the 
orientation of the photogrammetric exposure and 
refer to the local y' systems are transformed for 
this purpose so they refer with their elements of 
orientation to the common coordinate system cho­
sen for the triangulation. Hence the next step in 
the computation iS the transformation of either the 
local y' system established at the point of observa­
tion P(cp', A'), or of the local orientation matrix 
R~(a, w, K) obtained in the photogrammetric re­
duction into a z-system selected for the subsequent 
triangulation (cf. sec. 2. 7.2.6). 

First the local y' system is transformed to the 
corresponding geocentric y system. The necessary 
rotations are through the angle (270° + cp) about 
the 2 axis and then through the angle ( - A,.,,) 
about the turned 3 axis. This gives 

y = R( -A;.,,) R(270° + cp ')y r' = 

[

cos A' 
sin A' 

0 

-sin A' 
cos A' 

0 

or analogously 

3 2 

~l [ sin
0
cp' 

~J -cosrp' 
(30) 

R.(a, w, K) = R( -A;.,,) R(270° + cp ')R~(a, w, K) 
3 2 

(31) 
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where R,(", w, K) corresponds in the y system to 
the photogrammetric orientation matrix. 

Basically the aim of the reductions so far 
discussed is to refer all the photographically 
registered directions to stars-observed from dif­
ferent statio:ns and, in general, at different times­
to a consistent stationary coordinate system. The 
computations would produce a rigorous geometric 
solution only if we could assume that the direction 
of the Earth's axis of rotation, i.e., the y3 direction 
of figure 8a, labeled instantaneous axis of rotation, 
remains' invariant in space. We know, however, 
that the poles describe more or less irregular loops 
in a period of approximately 430 days about a 
mean position which may have a secular displace­
ment. From a geometrical point of view it is 
immaterial whether this so-called polar motion is 
treated as an additional motion relative to the 
astronomic reference system (a sort of additional 
precession and nutation) or whether one accepts 
the direction of the rotation axis as in~·ariant and 
ascribes the phenomenon to a displacement of the 
crust. However, in addition to this purely geomet­
ric and computable effect the influence of polar 
motion is coupled with the problem of time 
determination at the observation site. For this 
reason the discussion of these corrections will be 
combined with the questions of time determination 
in the next section. 

2.4 Meaning and Measurement of Time 
The significance of time determination for the 

problem of geometric satellite triangulation is 
twofold. First, because of the dynamic characteris­
tics of the universe, i.e., the Earth's motion in 
space, we must determine the instant of the 
photographic exposure of the star image within the 
time sequence of the astronomic observations. In 
addition, because of the satellite's own motion, the 
instants of observation of the satellite at all 
stations observing the pass must be correlated 
with respect to an otherwise arbitrary measuring 
frequency, which amounts to a relative time 
determination. 

With this, one interpolates points along the 
satellite track whose images, from a geometric 
standpoint, represent basically arbitrary but 
uniquely defined points on the orbit. In registering 
the pass of a satellite whose track is marked by 
short duration light flashes this requirement is not 
necessary. Because of the finite speed o(light, not 
all the photons emitted in the flash will arrive at 
the different observation sites simultaneously, but, 
for that very reason, they will produce images 
whose positions on_ the various photograms corre-

spond to a single point in space--the origin of the 
flash-and thus fulfill automatically the "geometric 
condition of simultaneity." In the following we will 
discuss, first of all and in more detail, those 
problems concerned with the impact on satellite 
triangulation of the time of observation needed for 
star imagery. We emphasize again that the re­
quirement for time correlation in star observations 
is purely geometric in nature. This conclusion 
follows from the fact that the spatial position of 
the Earth and its observation stations changes with 
time relative to the astronomic reference system. 
The measurement _of time, therefore, serves to 
refer the space ,orientation of the Earth at the 
instant of observation to an orientation assumed as 
a normal position and corresponding to an orienta­
tion at a specified epoch. 

For the motion of the Earth around the Sun it is 
necessary to refer the Julian day and fraction of a 
day, as represented by UT for the instant of 
observation, to the beginning of the corresponding 
tropical year. The latter represents a point of time 
independent of all calendar reckoning and the 
same for all meridians (cf. [23]. The interval T so 
determined is needed for all the reductions de­
scribed in sec. 2.3. The interval derived from the 
time of day serves as the basis for determining 
local sidereal time in accordance with the steps 
given in the previous section. There now arises in 
satellite triangulation the problem of the geometri­
cal meaning of universal time. 

The time of day is transmitted by radio signals 
from numerous stations distributed all over the 
world. Aside from the delays due to physical 
causes in the transmitters, receivers, and anten­
nas, and variations in the propagation velocity of 
light caused by atmospheric influences, these time 
signals represent a sequence of precisely regular 
intervals. They are monitored by atomic clocks of 
great stability ( ± I0- 10 sec. over a period of 
months with daily variations < I0-11 sec.). 

In principle these transmitted signals do not 
represent a time referenced to Earth rotation but 
to a definite signal sequence. For most daily and 
public purposes, however, it can be considered 
directly as the "time of day." By means of star 
observations at a group of observatories linked in 
an international service, the relation between these 
time signals and time referenced to Earth rotation 
is established. In addition, this international work­
ing group is concerned with the determination of 
the instantaneous pole position. These figures are 
published in the form of preliminary and, later, 
definitive. values. One set lists the position of the 
instantaneous pole with respect to a selected nnll 
position, while other tables give time corrections to 
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convert the transmitted signals to universal time 
1 (UT-1) and universal time 2 (UT-2). The res-Ults 
from the various observatories-approximately 60 
are participating at this time-are combined at the 
Bureau International de l'Heure (B.I.H.) into a 
"mean observatory" value. To some extent this 
eliminates statistically neglected influences such 
as refraction anomalies, secular pole motions, 
irregular changes in the Earth's rotation, and other 
factors. Likewise it smooths out the errors in the 
determination of time due to the systematic biases 
caused by the assumed nominal longitudes of the 
various observations and long term refraction influ­
ences. UT -2 in this system is with reference to a 
fictitious Earth that is practically independent of 
periodic, chiefly seasonal changes in the rate of 
the Earth's rotation. 

UT-1 is characterized by the fact that it, like the 
original observation, contains the periodic, sea-· 
sonal variations of the Earth's rotation and there­
fore represents a measure of the instantaneous 
amount of rotation. Hence it is a more suitable 
time for the present purpose, and a time interval 
so determined can be converted to the correspond­
ing sidereal interval by multiplication with 
1.00273791. Since 24 hours of sidereal time repr<i­
sents exactly 1 revolution of the Earth relative to 
the right ascension-declination system, the com­
puted sidereal time is proportional to an angle of 
rotation (the geometric equivalent of the time 
coordinate) and represented in fig. 9 as sidereal 
time of the null meridian ( cf. fig. 8a). By introduc­
ing two great circles to include this angle, one 
obtains a definition valid for all instantaneous 
positions of the pole. One great circle is the 
meridional trace of the plane containing the instan­
taneous axis and pole of the Earth's rotation, and 
the point of the celestiill equator that represents 
the equinox of the observation period. The other 
great circle is the null meridian, which is the trace 
of a plane again containing the instantaneous axis 
of rotation, and an arbitrary, but uniquely defined 
point of the Earth's surface. This point, by inter­
national convention, has the coordinates longitude 
Ao = 0 and latitude 'Po = 0 in the universally 
recognized geodetic system of latitudes and longi­
tudes referenced to the mean position of the pole 
for the ·period 1900--05. Unfortunately this point 
lies in the Atlantic Ocean, so no direct observa­
tions are possible from it. 

The ultimate refinements in time determination 
are not of decisive importance in the method of 
geometric satellite triangulation treated here since 
the accuracy requireJ in timing the instant of star 
exposures is at most ±3 msec. UT-1 consequently 

furnishes geometric satellite triangulation with a 
time coordinate whose geometric equivalent, when 
transformed into a sidereal interval, is compatible 
with the coordinate transformation (20). 

In the past, the above situation was complicated 
by the fact that universal times UT-1 and UT-2 
were not referred to the C.I.O. (Conventional 
International Origin) pole of 1900-05 but, until 
1958, were referred to the Cecchini pole and 
thereafter had as a reference a. periodical! y dis­
placed pole with a "secular" motion. Since for all 
these various positions of the pole the correspond­
ing null meridian passed through Greenwich, its 
intersection with the conventional Equator was 
correspondingly displaced. As a consequence, for 
the period 1958 to Dec. 31, 1967, UT-1 can not be 
used as a rigorous measure for rotation. 

Mter Jan. 1, 1968, the time pole is stationary 
and identical with the C.I.O. in accordance with a 
resolution of the International Astronomical Union 
(Lucerne 1967). It should be noted, however, that 
the· classical null meridian of Greenwich must be 
replaced by either a correspondingiy rotated geo­
detic meridian or by an equivalent discontinuity 
introduced into universal time on Jan. I, 1968. 
After that date the situation is clarified; our basic 
considerations have validity and UT -1 can be 
accepted as a measure of Earth rotation. Under 
these assumptions, the y system obtained with (30) 
represents a reference system corresponding to an 
instantaneous position of the Earth to which the 
photogrammetric rotation matrix R,(acuK) (com­
puted with (31)) is referenced as well. From the 
above geometric considerations, it follows readily 
that for the eventual geometric normalization of 
the observation results, i.e., for the transformation 
of these data into the system chosen ·for the 
triangulation of the station coordinates, it is necesM 
sary to rotate the y system referenced to the 
observation period into the z system of the epoch 
selected for the spatial triangulation. 

From figure ll it is apparent that only two 
rotational components are needed. The y system 
must first be turned about its 2 axis thrwgh the 
angle -a and then about its 1 axis through the 
angle -b. The obtained 3 axis will then define the 
direction of the rotation axis for the epoch chosen, 
while the intersection of the 1 axis with. the sphere 
represents the origin of the system of time measM 
urement adopted by international agreeinent, its 
meridian corresponding to the classical Greenwich 
meridian. From fig. ll this transformation is 

z = R(-a, -bh· (32) 
2 1 

with 

----------------------------------------------------------------
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R(-a, -b)= R(- b)R(- a) 
2 1 1 2 

[ 

1 0 
= 0 cos b 

0 sin b 

0 ] [ cos a 0 si
0
n a] (33) 

-sinb 0 I 
cos b -sin a 0 cos a 

The rotation angles a and b are small and equal 
to the differential displacements x andy published 
by the B. I. H. to define· the instantaneous pole with 
respect to the conventional origin. The rotation 
(33) becomes, therefore, 

R( -~, -~) = [ -~ ! -~] (34) 

The R. matrix of (31) transforms into the 
corresponding photogrammetric rotation matrix 

R.(a, w, K) = R( -x, -y)R.(a, w, K). · (35) 
2 1 

When the satellite triangulation is adjusted 
within a local, rectangular coordinate system, 
which could be entirely practical within a given 
geodetic datum, the expression (35) must be 
further rotated. If, for example, the rectangular 
Cartesian coordinate system to be used in the final 
triangulation is to be erected at the point P(rp, 
Aeast' h = 0) we will have, analogous to the 
preceding transformations, 

z' = R(A,.,1(90° - <p ))z 
3 2 

(36) 

with 

R(A,.,1, (90° - rp )) = R(90° - rp )R(A, • .,) = 
3 2 2 3 

0 -cos rp] [ cos A sin A OJ 
1 0 -sinA cosA 0 
0 sin <p 0 0 I 

(37) 

and similarly for the transformation of the photo­
grammetric orientation matrix 

Rz'(a, w, K) = R(.~1, (90° -; rp ))R.(a, w, K). 

(38) 

2.5 Additional Geometric and Physical Influences 
In sec. 2.4 all the coordinate transformations 

(based on the given star catalogne data) have been 
treated that are needed to reconstruct analytically 
the photogrammetric bundle. of rays and to orient 
it in spare. Ttle analytical reconstruction is by 
means of those parameterS I i"Jat simulate. interior 
orieP~ 1:iOn .:tnd distortivn. while the exterior ele­
ments express the orientation in space of the 
bundle with respect to a uniquely defined, Earth-

fixed coordinate system. To reproduce the oriented 
bundle, a mathematical model described in detail 
in sec. 2.7.3 and 2.7.4 is used. For the present, 
assume that this problem is solved and we pass on 
to an ·explanation of the corrections needed to 
derive, from the image coordinates of the satellite 
points and the parameters from bundle reconstruc­
tion, those directions needed later in the triangula­
tion of the station coordinates. It is assumed 
further that the measured images of the satellite 
trail have been made to conform to the mapping 
principle of a rigorous central perspective by 
means of the parameters obtained in the bundle 
reconstruction. Then the direction in space corre­
sponding to any point image computed with the 
corresponding elements of interior and exterior 
orientation will be tangent at the center of projec­
tion to the ray of light representing the physical 
light bundle. The center of projection here is the 
center of the unit sphere. The unit vector YOr in 
this direction is derived from the ·photogrammetric 
bundle vector p by use of (81), sec. 2. 7.2. In sec. 
2.3 it was explained that this direction refers to 
the same coordinate system as the photogramme­
tric rotation matrix in use. Hence by use of the 
R~(awK) matrix mentioned there, one obtains the 
unit vector YOr, corresponding to an arbitrary 
image where in accordance with (61) 

[
y;] 

I I - I 

Yor = Y~ = Yr · 
Ya , 

(39)3 

This observed direction must first be corrected 
for refraction. The problem of refraction is shown 
schematically in figure 12 for both star and 
satellite images. Astronomical refraction r CIJ for 
zenith distances up to 85° can be computed to 
sufficient accuracy with, for example, Garfinkel's 
[24] formula: 

r~ = 11w( 1'1 tan~+ T 2 tan3~ 

'+ "• tan5~ + 1'4 tan'~) (40) 

in which 

T = Tfl'0, where T0 = 273.16 K• 
W = PIT0 , where P = plp0 , and Po = 760 mm Hg. 
tan,B = (11/y) tan z,, where y = 8. 7137 and 
Zr = observed zenith distance. 

If the coefficients 1'1 to 1'4 are with reference to 
geometric zenith distances, then an iteration loop 

3 The l'Ubscript "0" used to designate a unit vector. will be 
omitted in the following unless needed for better understanding. 
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must be provided for the computation of refraction 
from observed zenith distances. 

Refraction for a satellite observation r, is, ac­
cording to [25], 

( 
a·s ) 

r"=r'~ 1-,--
8 d COS Zr 

(41) 

where: a = r + H = Earth radius + height above 
sea level of observing site, 

. s = RT ofr, where R = 29.2745, the gas 
constant, hence 

s = 0.001255, and 
d = distance from satellite to station in 

meters. 
The unit vector corrected for refraction is ob­

tained from (39) using (25), (26) or (27), as 

y' = y/ -

-cos(zr +1) cos A 

cos ( Zr + ~) sin A 

. ( '•) sm Zr + 2 

or with (73) in sec 2.7, by 

where r8 is in radians. 

. r, 
2 sm2, (42) 

(43) 

To compute the refraction r, for the direction to 
the satellite in (41) the distance d between the 
station and satellite is needed. This quantity is 
also necessary for the computation of subsequent 
corrections. However, only a good approximation 
for the distance is needed and it will also be 
sufficient in computing y' from (42) or (43) to 
replace r with r m· With (79), (85) and (86) from 
sec. 2. 7 .2, the relevant coordinates of the images 
can be computed. In conjunction with the R(awK) 
matrix from (35) or (38) and the approximated 
station coordinates, these coordinates can he used 
to make a preliminary triangulation of the satellite 
positions and to compute the distance d needed. 
For the adjustment procedure in practice see sec. 
2.7.5.1. 

A further correction is necessary to account for 
the fact that the satellite images are not, rigor­
ously, C(Jmmon ta!·get points. The fla'Shes emitted 
by the "active" satellites (e.g., A."'NA. GEOS A, 
GEOS B) can be treated as uniquely defined target 
points in space. The present day "passive" geo­
detic satellites (ECHO I and II,• P AGEOS) are 

Verlico/ of 
ObservatiOn Site 

z,. =Observed 
Zem'th Distance 

,; 

0 
r =Earth 

Radius 

Figure 12.-Schematic of star and satellite refraction . 

balloons that merely reflect suulight, and must be 
sufficiently large to reflect an adequate amount of 
light. Those in use to date have a diameter of 30 
m. The surface of the balloon reflects the image of 
the sun; the position of this image on the balloon 
sphere is a function of the geometric ar:ange.ment 
of the sun, the satellite, and the observmg site at 
the instant of exposure. The necessary correction 
is analogous to an eccentric reduction in survey­
ing. The correction varies not only for every 
station observing the target but also for each 
direction at a given station. The correction is to 
reduce each observed direction to the center of the 
balloon; this is called a phase correction because 
the position of the Sun's image depends on the 
illumination phase of the satellite. It is assumed 
that the satellite has the spherical shape it had 
when launched into orbit. Figure 13 shows sche­
matically the geometry involved. 

It can be assumed that the Sun is at a great 
enough distance so that the direction to the Sun, 
indicated by the unit vector I at the satellite, is the 
same at the point of observation. In accordance 
with Snell's reflection law, the points B (balloon 
center), center of the Sun, the image S of the Sun 
on the balloon, and the point of observation P, all 
lie in one plane. so that the unit vectors I, m, m*, 
nand the vector B'B are coplanar. 

From figure 13, it follows directly that 

n = BB, + 8Bm (44) 

4 Echo [ tenninated its orbit on May 23, 1968 and Echo U on 
June 7, 1969. 
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Figure 13.-The satellite phase correction. 

or 

1 . 
n = -.- (I + cos y m). (45) 

Sill 'Y 

The scalar product of the unit vectors I and -m is 

cosy= I · (- m). (46) 

Again, from figure 13, 

B'B =-an. (47) 

The distance d between the observer and the 
satellite is large relative to the balloon radius, 
hence to a, so that to a sufficient degree of 
approximation 

or with (45) 

a 
dm = -- n d ' (48) 

a 
dm = - -d-.- (I + cos ym). ( 49) 

smy 

The displacement a from the center for a reflect­
ing satellite with radius' is, from figure 13, 

r . 1' a= ~SID 2. (50) 

For a balloon with a diffusively reflecting sur­
face it can be argued that the centroid of the 
satellite image corresponds to the centroid of the 
illuminat!ld portion of the balloon surface as seen 
from the observation site. In this case we have 

' a = 2 (1 - cos y ). (51) 

Finally, with (50) or (51), 

m* = m + dm. (52) 

To compute (49) the unit vectors I and m are 
needed. Up to this point we have assumed only 
that they are referenced to an arbitrary but 
consistent c.oordinate system. Therefore, by (43) 
we set 

m =y' (53) 

With the right ascension aQ and declination l>e 
values of the Sun interpolated for the time of 
observations, the x e vector is computed with (1), 
neglecting refraction and other corrections, and 
then the x'e vector, using local sidereal time 
(J = 1.00273991 (UT-1) + A;.,. and (20) and (21). 
Finally the y;.,. vector is derived with (23) and 
(24). Then 

Y'e =I. (54) 

Likewise, with (52), the unit vector y' in the 
direction of the balloon's center is 

y' = m*. (55) 

A detailed explanation of the phase correction is 
given in [26]. 

To interpret the direction of (55) correcdy in a 
geometric sense, it is necessary to bear in mind 
that the satellite, serving as a target, as well as the 
station site, are subject to independent motions. 
The satellite in orbiting the Earth shares the 
motion of the Earth around the Sun, so that the 
annual aberration effect is canceled. 

However, due to the Earth's rotation the linear 
velocity component of the observation stations 
creates a displacement of the observed directions 
corresponding to diurnal aberration. In addition 
the relative spatial relation between the satellite 
and observing station changes in the time required 
for the light to travel from satellite to station. This 
situation is shown schematically in figure 14 for 
the case of a flash emitted from the satellite. 

The pusition of the observing station (cp ', A') and 
its Earth-fixed y' reference system (symboliz·~d by 
the y 3 direction) is shown at the instant t of the 

---------------------------------------------------------------
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when recording light flashes from satellite. 

emission~ Let the geometric direction at time t 
from the station to the flash be indicated by the 
direction angle a. Due to its finite propagation 
velocity c, the light requires an interval T to reach 
the station by traversing the distance d 

d 
T=­

C 
(56) 

During the interval T, however, the station has 
reached a position differing from the initial by the 
angle WT, where w = 15"/s is the Earth's angular 
velocity. From the aberration theory ( cf. [27]) it 
follows that the apparent direction of observation 
differs from the corresponding geometrical direc­
tion by the aberration angle <1. This latter direction 
is parallel to the geometrical direction existing 
between station and satellite at the instant t. This 
statement is rigorous to the order to which the 
Earth's rotational velocity may be considered lin­
ear and constant. It follows that the flash is 
observed at the directional angle {3 relative to the 
local coordinate frame. The angle a needed in the 
subsequent treatment of the problem is therefore 
obtained from 

a= {3 + W"T (57) 

The situation is complicated somewhat for the 
case in which satellite triangulation is carried out 
not with flashes but by means of a continuously 
illuminated satellite. The shutter mechanism of the 
observing camera permits the chopping of the 
satellite trail into a series of separate images. Thus 
the individual images are formed at times t 1, t 2 , 

. . . t0 , to which appertain corresponding light 
travel durations T 17 T 2 , ••• 'Tn· The images 
corresponding to instants t 1 + TH t2 + T 2 , ••• 

tn + 'T n must now be interpolated into the image 
sequence. Strictly speaking, according to figure 15 
the interpolation should be for the instants 
t1 + 'T~,. t 2 + T~, ... tn + T~, where 

*- 'T2-'Tl 
'Tt -'Tt +---T1, etc. 

t2- tl 

The difference T1*- T1 is, however, negligible. To ef­
fect the interpolation a time-related function of posi­
tion is set up, expressing the photographic image 
sequence . 

Figure 15 shows the relations existing between 
the recorded time, satellite position, and the 
observation station, the symbols used having the 
same meaning as in figure 14. The principle of 
interpolation is shown, in considerably simplified 
form, for only two observations occurring at in­
stants t and (t + <lt). As before, the needed 
direction angle a is obtained from the interpolated 
observed direction {3 by means of (57). 

The direction a thus obtained reproduces the 
geometry between station and satellite existing at 
the instant t. From a similar treatment of the 
observations at other stations observing the same 
pass, directions to the satellite's position at the 
instant t can be computed. These, then, are 
geometrically coherent directions with which the 
eventual space triangulation of the observing sta­
tions will be carried out. The interpolation of 
fictitious satellite images referred to above also 
serves the purpose of taking into account the time 
differences between the station clocks at the 
various sites (cf. sec. 2.6). The time differences 
can be considered as shifts in the origins of the 
time bases at the several observation stations at 
the same time. 

In order to execute the various reductions just 
described, it is necessary to derive the correspond­
ing image coordinates x, y with (85) and (86), 
referenced to the vector y' of (55). On the 
assumption that the exposure sequence has been 
carefully monitored (the practice with the BC-4 
system is 'to within 50 p,s.), the following polynomi­
als can be set up as interpolation functions: 

X = a 0 + a1t + a 2t 2 + aat3 + a4t
4 + a5t5 + ... 

y = b0 + b,t + b,t' + b,.t3 + b4t 4 + b5t 5 + . 
(5!1) 

The coefficients a0 , a 17 ••• an and b0 , b17 

b. are obtained from an adjustment ( cf. 2. 7 .5.1). 
The degree assumed for the polynomial depends 
chiefly on the length of the recorded satellite trail, 
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Figure 15.-lnfluence of diurnal aberration and Earth rotation on 
light reflected from continuously illuminated satellite. 

i.e., more or less on the aperture of the camera 
used. With the BC-4 system a polynomial of the 
5th degree, at least for the component in the 
direction of the trail, is necessary ( cf. sec. 2.1). 
Several hundred satellite images are used to 
compute the polynomial. The adjustment effects a 
smoothing which is of decisive importance for the 
accuracy of satellite triangulation, since it elimi­
nates the influence of scintillation. Regardless of 
its amplitude which, depending on local meteorol­
ogical conditions, can attain several seconds of 
arc, scintillation is always characterized by a 
nearly ideal normal distribution and hence can be 
eliminated almost completely with a Gaussian 
adjustment, provided a sufficiently large number 
of satellite images are available. This condition is 
not met with the use of present-day light flashes. 

The polynomials (58) are now used to interpolate 
fictitious satellite images. Image coordinates X, Y 
are computed for the instant (in station time) that 
corresponds to the satellite position at time T. 
Since, as indicated above, the times assigned to 
the various observing stations are not necessarily 
referenced to the same null point, the local t1 + 'T1 
v~lues must be reduced to a consistent clock time 

by the addition of t:.T1 (represented schematically 
in figure 16). 

To repeat, the station times t, + r,, t 1 + T 1, 

tk + Tk, etc., used for interpolation at station i, j, 
k, ... do not represent the same instant T at the 
clock, but fix image coordinates which are geo­
metrically consistent, i.e., they satisfy the "geo­
metric condition of simultaneity" mentioned in 
sec. 2.4 . 

With the image coordinates X, y thus obtained, 
the corresponding y' vector is recomputed from 
the corresponding bundle vector p of (81). The last 
correction modifies the orientation of this vector to 
account for the Earth's rotation during the light 
travel time T. Theoretically, this is accomplished 
by rotating the local y' system about its 2 axis 
through an angle -(90° - cp'), which brings the 3 
axis into coincidence with the Earth's rotation 
axis. Next, the system is rotated about this latter 
axis through the angle -w"T. This cancels the 
effect of the Earth's rotation. Finally, the twice 
rotated 2 axis is turned through the angle (90 - cp), 
resulting in a system with the unit vector y,. The 
necessary computations are therefore: 

y; = R(90°- cp')R(- w-r)R- (90°- cp')y' = 
2 3· 2 

0 
1 
0 

-cos cp '] [ c?s w'T -sin w-r O~J 
0 sm ruT cos ruT 

sincp' 0 0 

[ 

si~ cp' 

-cos r.p' 

~ co~cp'] y'. 

0 sin cp' (59) 

Since wr is small, (59) simplifies to 

[ 

-y~ sin cp' ] 
y; = y' + y~ sin r.p' + y~ cos r.p' 

-y~ cos r.p' 
0 W'T. 

(60) 

The transformation of the direction of the unit 
vector y; into the chosen z or z' system can n.ow 
be. effected in accordance with (30) and (32) or 
(36), as the case may be. This completes the 
discussion of all the steps needed in preparation 
for the satellite triangulation proper. The nel<t 
section describes the observation technique, since 
familiarity with the field operations contributes to· 
an understanding of the geometry of satellite 
triangulation. Then, in sec 2.7, the mathematical 
formulation of geometric s..ttellite triangulation is 
presented as a whole, with back references to the 
results derived in 2.3, 4, and 5. 
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2.6 Measuring Procedures of the Geometric 
Method 

2.6.1 Photogrammetric Camera 
The techniques used in the measurement of 

rocket trajectories, particularly because of their 
high accuracy requirements, had an early influ~ 
ence on the development ·of photogrammetric data 
acquisition and evaluation instrumentation. Char­
acteristic in this field of application is the neces-. 
sity to combine a great number of observations in 
a single photogram in which, in turn, each individ­
ual observation is generally registered very accu­
rately against a time or frequency standard. Con­
sequently there is a requirement on the photo­
grammetiic instrumentation for great stab~ity over 
extended periods of observation. This requirement 
led to the development of the so-called ballistic 
camera which, on the whole, is based on the 
phototheodolite of terrestrial photogrammetry. In 
order to adapt the instruments to the unorthodox 
requirements of the geometry encountered in 
tracking rocket trajectories and at the same time 
increase the accuracy of the direction determina­
tion, cameras were developed that could be ori­
ented arbitrarily and whose objectives had long 
focal lengths. A corresponding decrease in viewing 
angle is inevitable because of practical limitations 
on the size of the plate. Exact elements of exterior 
orientation are obtained with the use of elements 
from the classical, geodetic angle measuring in­
struments such as precision spindles, circles, and 
hyper-sensitive levels. 

The development of instrumentation reflecting 
these concepts reached a high point in the l9.Ws 
with the Askania phototheodolite [28]. This camera 
had a 370-mm focal length, f/5.5, 13 X 18-cm plate 
format and a synchronous drive for the rotary 
shutters, producing 1.5, 3, 6, and 12 exposures per 
second with a synchronization accuracy of 10-3 

s. In addition, a louvered shutter was available to 
block out certain exposures in the sequence or to 

generate time-related star ·trails. The horizontal 
and vertical circles could be set to within 3cc. 

These instruments were used in Peenemiinde 
for measuring the V -2 trajectory up to the point of 
engine cutoff. On the resumption of similar proj­
ects in the USA after 1945, interest in photogram­
metric precision metrology faded because of, as it 
turned out, too optimistic expectations from elec­
tronic approaches to the problem of trajectory 
measurements. When it became apparent that 
neither these electronic approaches nor the capa­
bility of the cinetheodolite could do justice to the 
developing rocket technique, the author had the 
opportunity, in connection with his duties at the 
Ballistic Research Laboratories of the Aberdeen 
Proving Ground, Md., to initiate plans for im­
proved precision theodolites. With the active and 
sympathetic cooperation of the Swiss firm Wild­
Heerbrugg, this resulted in today's well-known 
BC-4 phototheodolite system. At the time, the 
experience gained in the various fields of experi­
mentation. created a demand for the development 
of a series of cameras with different angles of 
view, to be used interchangeably on the same 
mount. In addition to the necessary variation in 
picture sequence over a wide range, the require­
ment for maximum accuracy in exposure synchro­
nization was considered of utmost importance. The 
development of the complete system covered a 
period of 10 years. The general concept is de­
scribed in [29] and technical details of the BC-4 
phototheodolite are explained in [30]. 

In the early sixties the idea of applying the 
photdgrammetric technique for geometric satellite 
triangulation to the establishment of a continental 
net began to be seriously considered [31]. The 
technical requirements for such a project differ 
from those of conventional trajectory mensuration, 
first, in that the exterior orientation of the camera 
is not determined with graduated circles, but from 
the photogram itself on the basis of the photo­
graphed control points (star images). Secondly, the 
requirement for unusually high accuracy demands 
that the parameters needed for the reconstruction 
of the photogrammetric bundle (the generalized 
model of interior orientation) be recomputed for 
each individual plate. This mali:es it necessary to 
effect a compromise between focal length (increase 
of intrinsic accuracy) and a field of view suffi­
ciently large to enable the observer to record a 
sufficient number of available catalogued stars in 
any portion of the sky. Absolute synchronization 
between the wideiy separated stations is compli­
cated, actually impossible in theory, in view of the 
unknown light travel time at the instant of obser­
vation. Hence, in satellite triangulation it is merely 
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necessary to record the instants of satellite obser­
vation very accurately (to at least 10-• sec) against 
the frequency standard at each station. However, 
the station clocks (frequency standards) must be 
calibrated with r~spect to a basically arbitrary, but 
uniquely defined time sequence. Synchronization 
of the clocks to within about 10-• sec is attained 
by periodic comparison at all stations with a 
traveling calibration clock, which in turn is com­
pared at regular intervals with an atomic standard 
(e.g., the U.S. Naval Observatory). Stations with 
limited accessibility are additionally equipped with 
a cesium standard. The transmission, via satel­
lites, of time signals for clock comparisons has 
proved quite satisfactory, with accuracies of from 
±2 to ±10 JLSec, depending on the electronic 
equipment available at the receiving station. These 
procedures ensure the elimination of the error 
source· due to uncertainties in the propagation of 
light, and reduce all other timing errors below the 
overall error level of the system. All other residual 
errors can therefore be neglected in the adjust­
ment. 

Reference [32] c"ontains a description of the BC-
4 installation as modified to the specifications of 
the U.S. Coast and Geodetic Survey from the 
original missile trajectory instrumentation. The 
present BC-4 phototheodolite differs from the 
installation described there mainly in the optic 
now in use, a special objective designed by Dr. 
Bertele and constructed by the Wild-Heerbrugg 
Co. which, taking all theoretical and practical 
considerations into account, represents an optimal 
solution for satellite triangulation. The Cosmotar 
objective lens has a focal length of 450 mm with a 
relative opening of 1:3.4, its chief advantage lying 
in the fact that it has minimal change of radial 
distortion within the visible spectrum. This practi­
cally eliminates differences in radial distortion for 
the centroids of images of stars of various colors 
and of the Sun's image reflected from the satellite. 
Figure 17 shows a camera with the Cosmotar 
objective and the Henson capping shutter men­
tioned in the next section. Figure 18 is a picture of 
a typical BC-4 installation. A satellite obs •rving 
instrument with tracking capability, developed in 
recent years by the firm of Carl Zeiss-Oberkochen, 
is illustrated in figure 19. 

2.6.2 Camera Shutters· and Their Mechanical 
Drives 

When continuously illuminated satellites are 
used for triangulation, the tracks of the stars and 
of the satellites on the photogram must be 
chopped into a sequence of individual time-related 

Figure 17.-Wild BC-4 camera with external Henson shutter 
assembly. 

images. The star trails are the result of the Earth's 
rotation, shared by the Earth-fixed camera, while 
the track of the satellite is largely due to its own 
motion although the Earth rotation during the 
satellite pass contributeS a component to the 
track. The track interruptions on the plate are 
effected in the BC-4 camera by three rotating disk 
shutters inserted between the lens elements, ap­
proximately in the principal plane of the lens 
system. Two of the disks rotate at equal rates in 
opposite directions to achieve maximum symmetry 
in the exposure and a high degree of efficiency 
(about 70%) of the shutter. The third disk subdi­
vides the primary image sequence generated by 
the rotation velocity of the first two disks which, in 
addition, fixes the exposure interval of the individ­
ual images. The most useful combinations of 
primary image sequence or exposure interval and 
actual exposure sequence in satellite triangulation, 
within the technical limitations of the BC-4, are 
shown in table 2. 

This shutter is activated by a synchronous motor 
specially developed for a frequency of 500 Hz. 
Registration of the image centroid is initiated by 
an adjustable, magnetic pick-up. Further technical 
details of the shutter drive developed and manu-
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Figure 18.-Typical setup on observation site with camera shelter and recording equipment shelter. 

factured by Fred C. Henson Co., Pasadena, Calif., 
are published in [33]; the shutter mechanism itself 
is pictured in figure 20. 

Corresponding to the combination selected from 
table 2, the rotating disk shutter generates a 
chronologically regular sequence of images. In 
order to create arbitrary groupings in this se­
quence for the purpose of identification, or to 
further subdivide this primary image sequence, an 
additional iris type shutter is installed in front of 
the exchangeable filter element of the BC-4, also 

TABLE 2.-Most useful combinations of primary 
image sequence, exposure interval, and actual 

exposure sequence 

Images per 
sec 

20 
10 
5 
2.5 

Exposure 
interval 
(100% 

efficiency) 
(sec) 

1120 
1/60 
1/30 
1/15 

Optimal subdivision 
with third shutter 

:2, :3, :4, :5 

Accuracy of 
timing 

(I0-6 sec) 

±20 
±40 
±60 
±70 

Figure 19.-Zeiss satellite tracking camera with recording unit. 
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Figure 20.-Henson capping shutter assembly (cover removed). 

made by the Henson Co. and known in the trade 
as a capping shutter. This is activated through 
solenoids and makes it possible to open or close 
the shuher in between two successive exposures 
generated by the rotating shutters. Technical de­
tails of the shutter operation are given in [33]. 

Although it would be desirable from the photo­
grammetric standpoint to register the stars, as well 
as the satellite, by means of a shutter located in 
the principal plane of the lens system, i.e., by 
means of, say, the rotating disks, a compromise is 
imposed by the limitations of the f-stop. While it is 
possible, even necessary, (cf. sec. 2.7.4) to record 
stars during the period of the satellite's passage, 
only low magnitude stars will register adequately, 
and their number is insufficient for the adjust­
ment. It is necessary, therefore, to expose stars 
with the aid of the capping shutter before and 
after the activation of the disk shutters, that is, 
before and after the satellite exposure proper. In 
order to obtain the correct time correlation for 
these images, signals for the opening and closing 
of this shutter are generated with the aid of 

adjustable contacts, so that the mean of the 
corresponding two instants of time is associated 
with the midpoint of the segment of the so created 
star trail, which is of finite length even for 
relatively short intervals of exposure. 

2.6.3 Electronic Control Instrumentation 
The electronic console controls the following 

principal functions: 
a. Drives the 500-Hz synchronous motor of the 

rotary disk shutter from the built-in station fre­
quency standard, 

b. controls the station clock with the same 
frequency standard, 

c. synchronizes the signal from the magnetic 
pickup of the rotating disk shutter with the station 
clock, 

d. programs remote control of both shutter 
systems, 

e. illuminates the fiducial marks and the auxil­
iary data for later identification and evaluation, 

f. drives the nine-channel registration equipment 
which records the course of the observation pro­
gram and 

g. compares the station clock with an external 
time standard or signal and monitors the accuracy 
of the rate of the station's frequency standard by 
means of a received calibration frequency (VLF). 

In. order to synchronize the rotating disk shutter 
with "he station clock the exposure sequence for a 
satellite pass is set mechanically by a suitable 
selection of gear ratio in the camera control (see 
table 2), with a similar electronic program in the 
synchronization system. This results in a display 
on the oscilloscope of a pulse sequence for the 
time code generator corresponding to the selected 
program (for example two exposures per second). 
Simultaneously, the pulses from the magnetic pick­
up, indicating the mid-open position. of the shut­
ters, are fed to the oscillograph. By a phase 
comparison the two signals, which are initially 
different in time, are brought into coincidence, 
effecting synchronization between station clock 
and exposure. Due to practical limitations in the 
mechanical precision of the drive there are slight 
irregularities in the shutter rates, causing the 
signal returning from the cameras to vary irregu­
larly in time with the comparison signal originating 
in the station clock. These deviations vary from 
about ±20 to ±40 p.s. The actual synchroniza­
tion proc~ss is therefore to give the signal from the 
station clock an adjustable bandwidth to each side 
of, for example, 100 p.s. If the signal from the 
BC-4 falls within this gate it is registered as 
synchronous on the Brush tape, otherwise not (cf. 
2.6.3[). The rate of the frequency standard is 
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Figure 21.-(a) BC-4 electronics control console, and (b) schematic. 
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monitored with a received frequency (VLF), and 
absolute time is assigned as described at the end 
of par. 2.6.1. 

When the auxiliary capping shutter is in opera­
tion for star exposure, with the rotating disk 
shutterS at rest, its ·opening and closing is re­
corded on the Brush tape together with the station 
clock signals. This determines time for the star 
exposures. A control console built by the Electron­
ics Engineering Co. of California, which at this 
time is part of all the BC-4 systems, is shown in 
figures 21a and b. 

2.6.4 Photogrammetric Registration 

The format of the BC-4 plates is 18 X 18 em. 

Figure 21.--{b) BC-4 electronics console schematic. 
They are either 6 or 10 mm thick and those of best 
quality have a flatness of 3 p.m. A good compro-
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mise between sensitivity and grain size is found in 
the Eastman-Kodak emulsion 103-F. After accu­
rately controlled developing of the plate particular 
care must be exercised in the drying process, 
turning the plate continuously. The essential infor­
matiO-n content of an individual photogram consists 
of the point-shaped star images and the satellite 
trail. For star registration a sequence of five 
successive individual images is necessary, for 
statistical reasons. To obtain uniform star images 
independent of star magnitude, it is necessary to 
expoSe several such sequences with various shut" 
ter speeds. In addition, the selection of optimal 
exposure time is dependent on the range in 
declination of the stars. Star photography, using 
the capping shutter, is executed before and after 
the satellite's pass. During the ·satellite pass 
additional images of the brighter stars in the field 
of view are generated by programming the rotating 
disk shutters. These star images are of particular 
importance for the exterior orientation since they 
are recorded simultaneously with the satellite trail. 
With suitable choice of exposure interval it is 
possible to obtain a presentation of both stars and 
the satellite in a series of similar, point"shaped 
images. 

In measuring the negative itself one is presented 
with the problem of centering a black measuring 
mark within a dark, point-shaped image.5 A series 
of experiments has shown that the plate measure­
ment process is faster and more reliable if a 
diapositive is first produced, so that the black 
measuring mark can be set within a white, round 
image. 

The negatives are copied in almost monochro­
matic blue light under vacuum onto a 6-mm thick 
glass plate covered with an exceedingly fine­
grained emulsion. Statistical tests have shown that 
the copying process introduces no marked deterio­
ration in accuracy. Figure 22 shows the star and 
satellite images schematically. The sequences A, 
B, C, and D, E, F, representS star images, each 
taken with the capping shutter and various shutter 
speeds, before and after the satellite pass, the 
upper star trails representing a brighter star. The 
sequences a, b, c symbolize images of the satellite 
and of stars recorded simultaneously by means of 
the rotating disk shutter. Because of the limited 
resolution of the objective and emulsion, the three 
satellite images designated b correspond to ouly a 
single, approximately point-shaped star image b, 
whereas the star imagery corresponding to the 
satellite exposure intervals a and c appear as star 
trails, unresolved into individual images. Stars that 

5 To date, ring-shaped measuring marks with a diameter of 20 
to 30 p.m are not available. 
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Figure 22.-Schematic of the star and satellite images. 

are insufficiently bright produce no measureable 
image b and those of higher magnitude are not 
recorded at all through the rotating disk shutter. 
Figure 23 is a magnified portion of a plate showing 
trails of the balloon satellites Echo I and II 
generated by the rotating disk shutter. 

2.6.5 Coordinate Measurements on the Compara­
tor and Their Reduction 

Measurement of the photograms, either of the 
original negative or of a diapositive copy, produces 
recta,ngular coordinates with an arbitrary origin in 
the plane of the plate. The comparator used does 
not necessarily have to operate on this principle 
but can, for example, measure polar coordinates 
instead [34]. These must, however, be transformed 
to the x, y coordinates needed later in the 
adjustment and the corresponding weight matrix, 
correlated in this case, must be computed. 

The measurement of photograms is one of the 
most essential phases of analytical photogramme­
try and has been discussed in detail in the 
literature. Furthermore, the specific measuring 
method used depends not only on the type of 
comparator used by also on the organizational and 
environmental condition~. Accordingly, ouly those 
phases will be discussed that are typical for the 
problem in question. 

If a high degree of accuracy in the end results of 
geometric satellite triangulation is to be achieved it 
is necessary to bear in mind from the outset the 
fact that a large number of points (600 to 750 star 
and up to 600 satellite images) must be measured 
on each photogram, requiring 5 to 8 hours for the 
measurement. Special care must therefore be 
exercised in the selection of the type of compara­
tor, the enVironmental conditions, and the arrange­
ment of working procedures, so that systematic 
error influences can be held to a minimum or can 
be corrected computationally. A description of the 
current procedures at the National Ocean Survey 
follows. 

~----~---------------------
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Figure 23.-Star plate with trails of two satellites. 
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T~e measurements are made on comparators 
equipped with independent x and y spindles with a 
working length of about 225 mm each. The 
instruments, manufactured by the firm of David 
Mann, Lincoln, Mass., are equipped with a direct, 
binocular observing optic with magnification ad­
justable in steps up to 40 X and a circular measur­
ing mark with a diameter of about 30 p.m. The 
comparators are operated in a controlled environ­
ment (temperature 22' C ±0.5 C, humidity 50% 
±5%) and tested about every 2 months for linear 
and ·periodic scale ~errors in the x and y spindles as 
well as for orthogonality of the motions. Calibrated 
grid plates in each of four positions are measured 
for this purpose by each of three observers. The 
coordinates measured to the nearest micron are 
registered electronically on a typewriter, punch 
tape, or card. The initial operations revealed the 
fact that the operator's body heat generated an 
unacceptably large systematic error in the meas­
urements because the optic of the comparator was 
not constructed in accordance with the Abbe 
principle. It was necessary therefore to modify tbe 
construction so as to project the measuring mark 
into the plane of measurement. Extensive tests 
have shown that the comparators now are stable 
for operating periods of from 2 to 3 hours. 
However, it is still necessary to subdivide the 
measurement of a plate into several such periods. 

The first step is to drill 8 circular holes into the 
emulsion, approximately 40 to 50 p.m in diameter. 
These are located at the four corners, at the 
extremities of the legs of the conventional fiducial 
marks pointing toward the center, and four addi­
tional at the approximate center of each edge. 
These drill holes are measured at the beginning 
and end of each measuring session, and the 
differences are used to check the stability of the 
instrument during that period. Before continuing 
with the description of the measuring procedure, 
some essentials in the preparation for plate meas­
urement must be mentioned. 

The readings on the circles in the field give an 
orientation of the camera in azimuth and elevation 
to within 10 to 20 seconds. With the time of 
observation and approximate station coordinates, a 
range in. right ascension. and declination on the 
celestial sphere can be computed. The computer 
searches the star catalogue tape for all stars in this 
portion of the sky and their coordinates together 
with the nominal camera constants and the ap­
proximated orientation data are used to compute 
plate coordinates for these stars. These points are 
projected on a cathode ray tube associated witb 
the electronic computer· and photographed to the 
scale of the photogram to produce a star chart. 

The stars are subdivided into three groups of 
magnitudes and labeled accordingly. Another sym­
hol designates a group of at least eight stars, as 
bright as possible and located in a circular ring 3 
em wide near the edges of the plate. Since the 
registration on the original photogram or diaposi­
tive varies according to magriitude, it is easy to 
bring the photogram and the "computed star 
chart" into coincidence on a light table. At the 
same time a grid template is superimposed, divid­
ing the plate format into 100 equal squares. The 
photogram is now examined under the binocular 
magnification of the comparator. In each of the 
squares a star of the series, before and after the 
satellite pass, that coincides with an image on the 
star chart is selected and marked. In addition all 
stars .recorded during the satellite pass (cf. fig. 20) 
and the specially selected bright stars near the 
~dge of the plate are marked with an identification 
symbol. 

After this preparation the plate is placed in the 
comparator. In order to eliminate as far as possi­
ble the influence of unknown systematic errors, a 
subgroup of stars and satellite images covering the 
whole extent of the plate is measured at each of 
the two or three sessions required. After comple­
tion of the measurements all premarked stars and 
satellite images will have been measured. The 
satellite trail crosses the plate within at most a few 
mm from the center, and its images are measured 
to a maximum distance of 6 em from the center in 
order to avoid edge effects in the emulsion. In 
order to ·combine the readings obtained from the 
two or three necessary comparator sittings in a 
consistent system, the individual sets are trans­
lated, rotated, and stretched with two scale correc­
tions in an adjustment to best fit the configuration 
of the relevant drill holes. The residuals of the 
reference points after these transformations are 
typically ±0.3 p.m. The entire measuring process 
is then repeated with the plate turned through 
approximately 180'. Both results are then meaned 
by fitting this latter result to the first, again by 
means of an adjustment (determination of two 
components of translation, a rotation, and two 
scale factors). From the residual differences be­
tween corresponding double measurements in this 
adjustment a characteristic mean error of ± 1.6 /LID 
results, as a measure of precision of the measured 
coordinates (cf. sec. 3.2). 

In addition, the plate coordinates of all pre­
marked star and satellite images are refei-enced to 
the plate center as determined by the fi<l.ucial 
marks. The coordinates of the above-mentioned 
bright stars near the. edges of the plate that are 
easily identifiable in th~ catalogue are now used to 
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compute an approximate orientation. With this 
result right ascensions and declinations are com­
puted from the image coordinates of all measured 
stars (cf. sec. 2.7.5.1). The same program com­
pares these values with the tape containing the 
star catalog, identifies the stars, and updates them 
to the observation epoch and tru~ equinox (cf. sec. 
2.3, eqs. (1) to (15)). 

The step in the overall adjustment procedure of 
satellite triangulation here under discussion repre­
sents a mutually· interacting combination of human 
effort and electronic computing. The contributions 
from the human element are the critical opera­
tions, such as the execution of the measurements 
and evaluation of the statistical intermediate re­
sults, while the computing system prepares star 
charts, presents catalogued data, and makes the 
necessary computations. 

After completion of this operation, measured 
coordinates for all selected stars and satellite 
images are available, as well as the star coordi­
nates reduced to a certain point. These data are 
now further reduced in a numerical adjustment to 
be discussed in the next section. 

2. 7 Numerical Adjustment 

2.7.1 Introductory Remarks 

In this section the attempt will be made to 
present the mathematical concept of the method of 
geometric satellite triangulation, considering the 
problem from the standpoint of analytical photo­
grammetry. The principle of the photogrammetric 
measuring method is most conveniently identified 
with the concept of a direction fixed within a 
certain coordinate system. It is therefore reasona­
ble to expect a clear and computationally economi­
cal solution with a vectorial presentation. It should 
be borne in mind that the mathematical expression 
for a direction in space can be changed either by 
rotating the coordinate system to which the direc­
tion is referred, or by a change in direction Within 
the fixed reference frame. The latter can be 
accomplished either by rotating the given vector or 
by the addition of a correction vector. From a 
mathematical stalldpoint, rotating the coordinate 
system and changing the direction are equivalent. 
However, this interpretation helps to explain the 
measuring process geometrically. One difference 
between the two cited operations becomes appar­
ent when one considers that a rotation of the 
coordinate system does not affect the geometry 
existing between the obje9t points. The concept of 
a linear coordinate transformation, including trans­
lations if necessary, therefore seems meaningful. 

A change in direction within a given coordinate 
system on the other hand effects a change of the 
spatial position of this direction in object space. 
The designation "change in direction" will there­
fore be reserved for this operation. 

Finally, as simple a representation as possible 
shall be given of the photogrammetric measuring 
method, whose concept rests on the principles of a 
central perspective. For this purpose it is merely 
necessary to get a mental picture of a unit vector 
x 0 assigned to a specified direction in object 
space, with reference to an arbitrary but uniquely 
defined coordinate system. With the assumption 
that the starting point of this vector coincides with 
the center of projection of the central perspective 
(e.g., at the center of the unit sphere), the 
photogrammetric bundle vector p in object space, 
reduced to unit length, is, geometrically speaking, 
identical with the above-mentioned vector x 0• 

Since the photogrammetric bundle vector p is 
referred to the coordinate system X, y, c of the 
camera, a rotation of the coordinate system trans­
forms the vector Xo into vector p or vice versa. 
This step, described above as a coordinate trans­
formation, represents the fundamental analytical 
operation of the photogrammetric measuring 
method (cf. sec. 2. 7.2.1). It now remains ouly to 
consider those displacements of the image from 
the central perspective concept that are the result 
of the physical photographic process. Before an 
adjustment algorithm is developed from this line of 
thought, the more important mathematical aids 
needed in this discussion will be listed in logical 
order.· 

2. 7.2 Mathematical Aids 

2. 7 .2.1 Various mathematical expressions for the 
unit vector 

From figure 24 directly: 

[
X -X~ = Y - Y0 [(X - Xo)' + (Y - Y0)' + (Z - Z 0)']-l 
z-z 

(61) 
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Figure 24.-Basic coordinate systems used in the numerical 
evaluation. 

where either 

[
(X - Xo)~ [g] 

x = (Y - Y0) or x = 71 
(Z - Z0) l 

Furthermore: 

[ 

cos f3 cos "'] 
x 0 = cos~ sin a , 

sm/3 

where from figure 22 

tan f3 

and 

x, 71 
tan a=-=-. 

x, g 

. g = (X - X0) = x1 

(Z - Z 0) x, 

(62) 

(63) 

(64) 

(65) 

(66) 

71 
(Y- Y0) x, 

=-
(Z - Z 0) 

2. 7.2.2 Coordinate transformation 

x' = R(y1y 2y 3) (x + llx) 
1 2 3 

(67) 

(68) 

where the rotation matrix has the following mean­
ing 

R(y 1y 2y 3) = R(y3) R(y,) R(y,). (69) 
123 3 2 1 

The y's designate the angles through which 
rotation takes place in the indicated order, the 
indices under the angle showing the axis around 
which rotation takes place. Counter-clockwise ro­
tation (as seen from above) is positive. 

2. 7.2.3 Change of direction 

From figure 25 

x~ = x 0 + l!:..x (70) 

The differential dx0 of a unit vector x 0 is a 
vector of infinitesimal length with a direction 
perpendicular to x 0 , since the length of x 0 is 
constant by definition. The vector Xo can therefore 
turn through only an infinitesimal angle E whose 
measure in radians is equal to the length of the 
linear displacement dx0• Therefore, for small dis­
placements the following equalities follow from 
figure 25: 

lllx\ =ldx~ = E = sinE = tan E (71) 

and hence 

x~ = x 0 + dx0 • (72) 

For the special case where dx0 is coplanar with 
one of the coordinate axes, e.g., with x3 , it follows 
from figure 26: 

dx0 = [ =:: :::1 E (1 - xi)-i 
+(l-x~~ (73) 

E in radians. x~ then follows from (72). 
Similar expressions for the other axes are ob­

tained by cyclic permutation of the subscripts and 
the vector components in (73) in the order 
(l}->(2}->(3}->(l). 

For larger values of E one obtains from (63) 

[

COS (/3 + E) COS"'] 
x~ = cos (/3 + e) sin a 

sin (j3 + E) 
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Figure 25.-Increment of a unit vector. 

(3) 

{l) 

Figure 26.-lncrement coplanar with a coordinate axis. 

2. 7.2.4 Central perspective 

From figure 27 the photogrammetric bundle 
vector pis 

p=x i+Yj+c k=[~] 
and, with (61) 

p 
p 0 =-, where IPI = (x 2 +y2 +c2)-i. 

IPI 

(75) 

(76) 

From (68), with 6-x = 0, follows the fundamental 
equation of analytical photogrammetry 

where 

Po= R(a, w, K) x0 
2 1 ; 

(77) 

R(a, w, K) = R(K) R(w) R(a) = [~:: ~:: ~j1: 
213 3 1 2 

'a1 'az r 
(78) 

The r,, in the orthogonal matrix (78) are actually 
the direction cosineki, i.t~., the components of the 
corresponding unit vectors, in the x coordinate 
system of the corresponding axes after the indi­
cated rotations through angles a, w and K shown in 

'• 

> 
Dlopositive as Seen from Center 

of Projection 

Figure 27.-The photogrammetric bundle vector p. 

J 

Figure 28.-Sense of direction of exterior elements of 
orientation. 

figure 28. They are found to be: 
r11 = cos a cos K + sin a sin w sinK 
r12 = cos w sinK 
r13 = -sin a cos K + cos a sin w sinK 
r21 = -cos a sinK + sin a sin oo cos K 

r22 = cos w cos K 

r23 = sin a sin K + cos a sin w cos K 

'a1 = sin a cos w 
Ta2 = -sinw 
raa = cos a cos w 

For the orthogonal matrix R(a, w, K) 

(79) 

R-1(a, "'· K) = R *(a, "'· K) (80) 

so that with (77), (78) and (79) 

X R*' p x 0 =- = ~,.a, w, K) -. 
lxJ 2 1 a IPI 

(81) 

Furthermore, from (77) with (78), (61) and 75) 

(!12) r13 ][(X -Xn)]IPI 
" (Y-Y:) -

23 o lxl 
raa (Z - Zo) 
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so that 

: = r 11(X - Xo) + r 12(Y - Y0) + r 13(Z - Z 0) =!!!: 
c r,.(X - X 0) + r 32(Y - Y0) + r 33(Z - Z 0 ) 

and 

y r21(X - X 0) + r22(Y- Y0) + r23(Z - Z 0) 

;; = r 31 (X - X 0 ) + r32(Y - Y0) + r33(Z - Z 0) 

Finally, for (83 and (84) 

em 
X=­

q 
en 

J=-. 
q 

q 
(83) 

n 

q 
(84) 

(85) 

(86) 

2. 7.2.5 Deviations from the central perspective 
bundle 

Refraction effects a displacement in direction 
which, with (73) [cf. also (26) and (27)], can be 
applied to the unit vector in the direction in 
question or which, with (74), leads directly to the 
unit vector corrected for refraction. 

We consider :Q.ext those influences that displace 
the iniage from its central perspective position that 
~re due to the constructive properties of the 
camera. It is known from experience that the 
image of the object point P is formed not at P' but 
at P*, which is displaced relative toP' by a vector 
4 lying in the plane of the photograph. 
From figure 29 we have 

X=x -x0 -·ax 
Y = Y - Yo - !;.y 

in which !:.x and !;.y are the components of 4. 

(87) 

(88) 

The coordinates x and y are obtained from the 
corresponding comparator coordinates, corrected 
for the nonorthogonality E of the comparator 
spindles as shown in figure 29, from 

X = Xmeas + Y "E 

Y = Ymeas 

(89) 

(90) 

Since the vector 4 is always small, a sufficiently 
accurate linear scale correction rr.~ults from re­
placing the scale factor c in (~5) auJ (86) by Cz and 
c •. Thus 

- c~ X=--
q (91) 

- c,n 
y=­

q 
(92) 

The required expressions for Ax and ll.y are, from 
figure 29, 

!:.x = !:.Rz + !;.Tz 
t;.y = t:.R. + t:.T. 

(93) 
(94) 

The symmetric radial distortion dR is, as usual, 
expressed as a polynomial in odd powers of the 
distance d. Omitting the first power, which is 
equivalent to a scale correction, one obtains 

where 

and 

t;.R = K 1d' + K,d' + K,d1 
d = [(x - x,)' + (y - y,)']l 

(95) 
(96) 

!;.R(x- x) 
t:.Rz = d ' = (X - x,) (K,d' + K,d• + K,d') 

(97) 

t:.R.= t;.Rr.yd- y,) = (y- y,) (K
1
d 2 + K,d4 + K,d6) 

(98) 

A model for the distortion due to the unavoida­
ble residual errors in centering the individual 
elements of the lens system was given by Conrady 
in [35] (cf. also [36]). In figure 29 the minimal 
component of this distortion is purely tangential 
and designated !:.T0 • For high grade objectives !;.T0 
can be expressed sufficiently accurately with two 
terms of an even polynomial in d: 

t;. T0 = K 4d 2 + K 5d 4• (99) 

According to Conrady the components of this 
nonsymmetric distortion are-using the designa­
tions in figure 29-in the tangential direction 

!;. T, =!;. T 0 cos ('Pr + {3) (100) 

and in radial direction 
!;. Tr = 3!;. T0 sin ('Pr + {3). (101) 

Hence 

!;.T = [!;.Tzl =[ c?sf3 sin/3] [t;.TJ. (102) 
t;.T .J -sm {3 cos {3 t;.T J 

Finally with (99), (100) and (101) one obtains from 
(102) 

[ 
2(x - x,) (y - y,) 3(x - x,)2 + (y - y,)'] [sin 'Pr] 

3(y - y,)' + (x - x,)' 2(x - x,) (y - y,) cos 'PT­
(103) 
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Figure 30 shows schematically the components 
for radial and decentering distortion for a certain 
distance d. 

Finally one obtains with (S9), (90), (97), (9S) and 
(103) in accordance with (S7), (88) and (93), (94) 
and figure 29: 

x = x + y·· E - (x- x,) (K 1d2 + K,d4 + K3d6) 

- (K4 + K 5d2) {2(x - x,) (y - y,) sin 'Pi: 

+ [3(x - x,)2 + (y - y,)2] cos 'PT} - x0 
(104) 

y = y - (y - y,) (K 1d2 + K,d4 + K3d6) 

- (K4 + K5d 2) {[3(y - y,)2 + (x - x,)2] sin 'PT 

+ 2(x - x,) (y- y,) cos 'PT}- Yo 
(105) 

where the meaning of d is defined by (96), and x 
and y are the comparator coordinates measured on 
the photogram. 

2.7.2.6 Description of th·e rectangular coordinate 
systems 

In order to make the computations for the 
adjustment of geometric satellite triangulation as 
clear and synoptic as possible, three rectangular 
coordinate systems are used. Each of the three 
systems has a subgroup. The three principal 
systems are designated x, y, and z systems, and 
the corresponding subsystems are x', y', and z'. 
The x system corresponds to the astronomic 
reference system in that the x 3 axis points to the 
celestial North Pole and the x1 axis intersects the 
Equator at the vernal equinox ( cf. fig. 7). The 
origin of this system is the center of the unit 
sphere that circumscribes the Earth's center (origin 
of the rectangular geometric coordinates) or any 
arbitrary point of observation. 

Turning the x system about its x3 axis through 
the hour angle 8 of the equinox (local sidereal time 
at observation site P) results in the x' system 

x' = R(O)x 
3 

(106) 

The y system (cf. fig. Sa) designates the rectan­
gular geocentric coordinate system that corre­
sponds to the orientation of the Earth for a specific 
epoch and in which the y3 axis points to the 
instantaneous North Pole. The intersection of the 
instantaneous null meridian with the instantaneous 
Equator determ~n,..~ 1lu ~:i.ection of t!le :h ux.is. 
The instantaneous null meridian is defined on the 
rf'ference ellipsoid as the trace of the plane 

containing the instantaneous axis of rotation of the 
Earth and that point whose ellipsoidal coordinates 
in the conventional geodetic reference system 
(1900-05 Pole) are cp = 0, A = 0.6 

At an arbitrary point of observation in the y 
system the corresponding instantaneous ellipsoidal 
coordinates are I(J' and A ~ast· If the y system is 
rotated first through the angle A~a" about its y3 
axis the local y' system is obtained. In this system 
the y~ axis points to the station zenith while the y; 
axis lies in the plane of the meridian as well as of 
the horizon, and hence points south. Therefore 

y' = R(90° - cp ') R(A ',.,) y = R(90° - cp ') x'. 
2 3 2 

(107) 
Cf. also (23) and (30), the latter being the inverse 
transformation. 

Finally we have the z and z' systems that 
coincide essentially with the y and y' systems 
except that the z systems are referenced to the 
conventional (1900-05) pole. If the displacement of 
the instantaneous pole relative to the conventional 
pole is given, as is the practice, by the compo­
nents x and y (cf. sec. 2.4 and fig. ll) the 
transformation is effected by 

z = R(-y) R(-x) y 
1 2 

(108) 

and 
z' = R(90°- cp) R(A,.,.,) z (109) 

2 3 

(cf. also (32), (34), (36) and (37)). 
Ellipsoidal coordinates corresponding to the- z 

system are designated cp and A. 

2. 7.2. 7 Transformation of ellipsoidal coordinates cp, 
A, h into rectangular coordinates and inversely. 

The astronomical·systems x and x' introduced in 
the previous section are, with respect to their 
information content, essentially two-dimensional, 
defining merely directions in three space (cf., e.g., 
fig. 7). On the other han:!, they, y', z, z' systems 
are used in the three-dimensional positioning of 
points on .the Earth's surface (station coordinates) 
(cf., e.g., figs. Sa and Sb). In the course of 
reduction of the satellite triangulation it is there­
fore necessary to transform geodetic ellipsoidal 
coordinates into three-dimensional rectangular co­
ordinates and vice versa. It is also necessary to 
make provisions for the introduction of given 
ellipsoidal coorrlinates with their weights into t!Je 
adju,tment of the spatial trianrulation. This brings 
up the problem of a purely geometric solution for 

6 cf. remark in sec. 2.4. 
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ellipsoid transformations. Finally the problem of 
determining ellipsoid constants arises when one 
desires to reference the rectangular station coordi­
nates resulting from an extended satellite triangu­
lation to a best-fitting ellipsoid for this area. In 
consequence of our assumption that electronic 
computers are being used, such computations are 
rigorously performed with closed formulas rather 
than the differential transformations of classical 
geodesy. 

Such a solution, in programmed form, can be 
found in [37] from which the necessary formulas 
are excerpted. 

The designations for the constants of the refer-
ence ellipsoid are taken from figure 31: 

a = semimajor axis 
b = semiminor axis 

e = eccentricity ~ ( a•:. bz) 1 
(llO) 

Figure 32 represents the plane of the meridian >... 
To transform the tp, A., h in,to geocentric rectan­

gular coordinates z1, z2 , z3 (cf. sec. 2. 7 .2.6 and fig. 
31) the following formulas are used 

z1 = [a2(a2 + b2 tan2 q:> )-l + h cos q:>] cos>.. (ll1) 
z2 = [a2(a2 + b2 tan2 qo)-l + h cos q:>] sin>.. (ll2) 
z3 = (a 2 + b2 tan2 q:> )-1 b2 tan2 q:> + h sin q:> (ll3) 

For the inverse transformation 

Zz 
tan>..=­

z, 
tan o/1° = z3 (z! + zf)-1 a·b-1 

(ll4) 

(ll5) 

tan 1/1 ° - ae2(zf + zi)-1 sin 1/1 ° - a -•bz3(zf + zi)-l 

1 + tan2o/J 0- ae2(z! +zf)-1cos oJi 0 

1/1 = oJiO + iloJi 
tan q:> = ab-1 tan oJi 

h = [(zf + zf)1- a cos o/1] sec q:> 

(ll6)7 

(ll7) 
(ll8) 
(ll9) 

If necessary the geocentric rectangular coordi­
nates may be transformed into local rectangular or 
vice versa by using (68) with (30) or (36). Such a 
transformation represents the link between the y 
and y' or z and z' systems of sec. 2. 7.2.6. For 
example with the z systems: 

z' = R(A0, (90° - qo,)) (z - z0) (120) 
2 

7 Use of (116) requires an iteration loop to avoid the alternative 
of solving a 4th-degree equation. Transforming rp to reduced 
latitude 1/1 accelerates the convergence of(ll6). See ref. [37], also 
A. R. Wooten, BRL Memo Rep. No. 1322, Ballistic Res. Lab., 
Aberdeen Proving Ground, Md., 1961. 
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Figure 32.-Parameters for the transformation of ellipsoidal 
to Cartesian coordinates. 

where the z0 vector is computed from (ll1), (ll2), 
(ll3) with qo 0 , ),.0 , h0 , the ellipsoidal coordinates of 
the selected origin of the z' system. 

In introducing certain ellipsoidal coordinates 

(121) 

with their given weights 

(122) 

into the adjustment of the spatial satellite triangu­
lation as additional conditions it should be noted 
that 

z' = [;i] (123) 

can be represented as a vector function of f(J. 

Hence we can compute 

Oz~ Oz~ Oz~ 

{)qo {)),. {)h 
dz' Oz~ Oz~ Oz~ 
iUp = T.- {)qo {)),. {)h 

(124) 

Oz3 Oz3 Oz3 
{)qo {)),. {)h 

and 

ilz' = T,ilqo (125) 
Since furthermore 

iUp - T _, 
dz' - ~P 

(126) 
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we have 

/!J.rp = T. -li!J.z' (127l 

From similar considerations we have, in addi­
tion: 

(128l 

The partial derivatives in the T. matrix (124l are 
computed with the coordinates q>0, A0, of the origin 
of the local system: 

" dz 
T • = R(A 0 , (90 - 'Poll "" , (129l 

3 2 ""' 

where 1z is computed by differentiation of the 

expressi.fns (111l, (112l and (113l as follows: 

d [-/cos A 

:, = -~ ~~~~ 
-II si,; A 
II cos A 

0 

oN 
oz, 

cos rp cos A] 
cos rp sin A 

sin ctJ 

oN -oz, 

(130l 

·• 
c. Transforming these rectangular coordinates 

into ellipsoidal coordinates, using (114l to (119l, 
taking into account the parameters of the new 
reference ellipsoid. 

This type of transformation is common, espe­
cially in connection with comparison of the final 
results of satellite triangulation with classical geo­
detic surveys. 

The determination of the constants of a refer­
ence ellipsoid. that best fits the results of an 
extended satellite triangulation is treated in [38]. 
Such solutions must include the results of dynamic 
satellite geodesy, and the formulas so far devel­
oped serve as the basis for sueh a solution, since 
with (110l and (119l the geoid undulation N can be 
written, after suitable transformation, as 

N = h - H = (zf + zfll sec rp 

- a(1 - e 2 sin'rpli - H (133) 

If the leveling height H be assumed free of error 
the other partial derivatives are 

oN oN oN - -oz3 oa of 
cos rp cos A .~os cp sin A sin rp -W b sin' rp W 1 

(134) 

where 

I = {a'b' tanrp [cos2 rp (a'+ b' tan2 rp) 312
]-

1 with 

+ h sin rp} p-1 (131) 

II = [a2(a2 + b' tan2 rp)-l + h cos rp] p-1 

(132) 

with p = 206 264".8 
The I!J.rp (/!J.rp, I!J.A, /!J.h) vector computed with (127) 

is in seconds of arc for /!J.rp and 11A and in meters 
for !lh; corresponding values are substituted in 
(125). 

The classical ellipsoidal coordinates of the trian­
gulation stations, referenced at times-especially 
in the world net-to different datums, are most 
conveniently recomputed on a common reference 
ellipsoid before they are introduced into the spatial .. 
triangulation as initial approxim'!.tions, as de­
scribed later on. These purely geometric ellipsoid 
transformations can be accomplished with the 
formulas above by 

a. Computing from the given coordinates rp, A, h 
with (111l, (112l, (113), geocentric coordinates 
pertaining to a specific ellipsoid, 

b. If necPosary, translating the origin-the ellips­
oid center-of these rectangular coordinate• and 

W2 = (1- e 2 sin2 rp) (135) 

"By means of an adjustment three translation· 
components dz1, .6.z2, .6.z3 and new ellipsoid param-

eters a and f = 1 - !!. can be computed, subject to 
the condition Iv~ = ~in. 

2. 7.3 Setting up the General Photogrammetric Ob­
servation Equations 

The general photogrammetric observation equa­
tions are obtained through combination of the 
expressions given in (91), (92), (104) and (105), with 
reference to the relations (79), (83), (84), and (96). 

The mathematical model is 

F = x - JE + (x - x,) (K,d' + K,d• + K,d") 

+ {2(X - x,) (Y - y,) sin 'PT + [3(x - x,i' 

+ (Y - y,)2] COS 'PT} (K4 + K,d") + Xo- Xmeas = 0 
(136) 
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G = y + (')' - y,) (K,d' + K,d4 + K,d6
) 

+ {[3('5' - y,)2 + (x - x,)2] sin 'f'T 

+ 2(x - x,) (')' - y,) cos I" •} (K4 + K5d2
) 

+ Yo-Ymeas = 0 
(137) 

where, according to figure 29 and (91), (92) and 
(96): 

and 

- c,m x=-
q 

')' = C,;t 
q 

(138) 

(139) 

(140) 

The meaning of m, n, and q is apparent from (83), 
(84), the direction cosines ru being obtained from 
(79). 

Substituting (138), (139), and (140) in (136) arid 
(137), taking into account (83), (84), and (79), 
results in expressions for the equations F and G 
which represent the mathematical model for the 
generalized central perspective. 

Since, especially at the beginning of the adjust­
ment, the approximation values for the exterior 
orientation parameters are not necessarily good 
ones, it is better to adopt the following computa­
tion procedure which converges more rapidly and 
leads to a simpler solution with sufficiently close 
approximation. It should be noted that the radial 
distortion (95) and particularly the decentering 
distortion llT0 (99), as functions of d, are small and 
vary little with a change in d. 

- At the beginning of each iteration step of the 
adjustment, x and y are computed using the 
comparator coordinates x and y, neglecting the 
influence of their measuring error, in accordance 
with figure 29 and (87), (88), (89), (90), (93), and 
(94). Since the coordinates x and y are replaced by 
the actual measurements l:r and lJJ, the designa­
tions I-. and z. will now be introduced for x and y. 

(141) 

Iii= z. -Yo - ll R. - ll T" (142) 

With this, 

and 

(x - x,) - (1-,; - x,) = dr 
IY - y,) = (t.-- y,) = a •• 

a• =a:+ a~. 

(143) 
(144) 

(145) 

The radial and Conrady components of distor­
tion llRr, llR., llTr, and llT" in (141) and (142) are 
computed with (97), (98), and (103). Since the 
mathematical models of the distortion and hence 
also the distance d with its components dr and a. 
refer to the geometry of the central perspective 
(cf. fig. 29), an iteration loop must be designed for 
computing all the distortion components used in 
(141) and (142). In (97), (98) and (103), x andy are 
first replaced by 

(146) 

and 

y = l•= z.- Yo (147) 

The llRr, llR., llTr and llT" so computed are 
substituted in (141) and (142) to give new l,., l;; 
values, with which distortion components are again 
computed, followed by new lx and I;; values. This 
iteration is continued until the difference between 
successive lx and lu becomes less than a pre­
scribed tolerance. 

Introduction of lr and z. and substitution for m, 
n, and q in accordance with (83) and (84) changes 
(136) and (137) to 

F = - z. · • 
+c ;_:r,_,['-'r'c;,' (X,__--;;X:-'oe'-)-:-+-'-r''C';;(Y-'---.T~:"')-:-+-'-r-"130;;~:----,.-z7,;::_)] r3, (X -X,) + r32 (Y - Y0 ) + ra3 ~ -:- Z0 ) 

+ x0 + (lx -x,) (/(1 d' + K2d4 + K3 d") 

+ {2(1;; - x,) (l.-- y,) sin 'Pr 

+ [3(1:r- x, )2 + (1.- - y,)2
] cos 'Pr} (!(. + K5d') 

-lr =0 (148) 

G = c.[r21 (X - X0 ) + r22 (Y- Y0 ) + r23 ~ - Z0 )] 

r31 (X - X0 ) + r32 (Y - Y0 ) + r33 (Z - Z0 ) 

+ Yo + (lr;- y,) (K,d' + K,d' + Kad") 

+ {[3(1.- - y, )2 + (1-,; - x, )2] sin "'r 

+ 2(l;r-x,) (lr;-y,) cos 'Pr} (K, +K5d') 

-z. = o 
(149) 



HellmutH. Schmid 41 

in which d' from (145) is 

d' = (I" ~ x,)' + (I;; - y,)' (150) 

The meaning of the ru is apparent from (78) and 
(79), and the 1,., l;; are computed iteratively with 
(141) and (142). 

Equations (148) and (149) are analytical expres­
sions for the generalized central perspective prin­
ciple. The influences requiring generalization are: 

a. Skew E of the comparator carriage; its effect 
is simulated by the term El• in (148). 

b. Linear scale. error in the measuring spindles 
of the comparator; their influence is adequately 
accounted for with the scale .factors ex and c11 in 
(148) and (149), respectively. 

c. Distortion; the two last terms in each of (148) 
and (149) simulate the components of the distortion 
vector 4 as the sum of radial and decentering 
distortion. In addition, the actual conditions are 
more closely approximated by displacing the origin 
(x,. y,) of the distortion from the principal point 
(x0 , y 0). These relations are shown schematically in 
figures 29 and 30; 

For the further treatment of the expressions 
(148) and (149) it is only necessary to note that the 
direction cosines (cf. (62), (83) and (84)) in the third 
term of (148) and in the second term of (149) refer 
to refracted corrections. 

The neXt step is to set up the observation 
equations. In the adjustment a generalized adjust­
ment algorithm, described in [39] and [40], is 
used. The mathematical model is given with the 
two functions F and C of (148) and (149), and the 
general observation equations are obtained by 
expanding these functions in Taylor series and 
neglecting terms of the second and higher order as 

iJF 
-.6.u+F0 =0 
iJu 

iJG 
-.6-u + C0 = 0 
iJu 

(151) 

(152) 

in which u is the vector of all parameters in· the 
mathematical model, including the measured 
quantities. The symbols designating the various 
partial derivatives ofF and C are listed in (153). 

u a w K x. Yo z. Cx c. Xo Yo X y z K, K, Ka X,Yx K, K, 'PTE lx z. 

where 

Lx = -Fx 
L. = '-F •. 

The corresponding analytical expressions includ-
ing the necessary auxiliary quantities are: 

<D = (x - Xo)lcx ® = <D F - r13 

® = (Y - Yo)lc. ® = ® D - r 21 

®=<DD-r11 ®=®E-r22 

® =<DE - r 12 ® = ®F - r 23 

® = ®r12 - <Dr22 

= +cx(<D · ® + ®) 
= +cz[(l + <D 2) sin K + <D · ® cos Kl 
=+ex® 

Cx 
=-® 

q 

(154) 

Cx = (j) 

Hx =1+Px 
fx. =Ox 
Mx = d~2 

Nx = d~4 

ox = d~· 

A. =+c.® · ® 

(153) 

B. = +c.[(l + ®2) cos K + <D · ® sin K] 

c. = -c.<D 

D. = ell@ 
q 

E. c.® 
q 

F. CJJ@ 

(155) q 
c. =® 
H. =P. 
I. = 1 + Q. 
M. = d,i.' 
l'i • = d.J' 
o. = d.J' 
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AR · 
P., = - d - dilJ,- d.,Dwcos 'PT 

- 4d.,[K., + (2di + d~)K,]cos <PT 

- 2d.[K4 + (d~ + 3d~)K5]sin <PT 

P • = - d.,dfl,- d.,Dwsin 'PT 

- 2du {[K4 + (3d~ + d~)K,]cos <fJT 

+ 2d_K5sin <PT} 

Q., = - d.,d.D,- dflwcos <PT 

- 2d., {[K4 + (d~ + 3d~)K,]sin <PT 

+ 2d.,J_K5cos rp;} 

Q. = - AdR - dfl,- dflwsin 'PT 

- 2d.,[K4 + (d~ + 2d~)K,]cos 'PT 

- 4d.[K4 + (d~ + 2d~)K,]sin 'PT 

where 

d., = (lx- x,) a.= (I•- y,) 
D, = [2K1 + 4K,d' + 6K,J•] 
Dw = [2K. + 4K,d'] 
d' = di +d~ 
R., = d'cos <PT + 2(dicos <PT + d.,J.sin <fJT) 
R. = d 2 sin <PT + 2(d~sin <PT + d.,d.cos <PT) 
s., = d 4COS <fJT + 2J2(Jicos <fJT + J.,J.sin <fJT) 
s. d 4sin <fJT + 2J2(J~sin <fJT + J.,J.cos <fJT) 
T., -sin <PT(K,d2 + K 5d4) 

+ 2(K4 + K,d')(d.,d.cos <PT- d~sin <PT) 

T. = cos <PT(K4d2 + K,d4) 

+ 2(K4 + K0d2)(d~cos <fJT- d.,J.sin <PT) 

U., = z. u. = 0 
Z., = -1 z. = - 1 (l55a) 

With an arbitrarily selected mean error of unit 
weight m0 before adjustment, the weight matrix 
[cf. (196)] assigned to the observation equations 
(151) and (152) is computed. The adjustment then 
determines the 4.u vector subject to the condition 

Au*PAu =Min 
The requiredparameters are then 

u = Uo +Au 

(156) 

(157) 

where Uo are the approximations for the parame­
ters [cf. (208) to (210)]. 

2. 7.4 Mathematical Model fo• thP- Photogrammet­
ric Camera 

The various applications of the photogrammetric 
measurements method each require the develop-

ment of an analytical expressiOn from the general 
formulation. A special application will now be 
shown as the first step in satellite triangulation. As 
outlined initially in sec. 2.3 the parameters needed 
for the reconstruction of the bundle from the star 
images (in this case: E, C:v c, x0, y 0, x,, y,, Kb K2, 

K3, K 4, K,, <PT) and of the exterior orientation (a, 
<(J, K) are to be computed. 

Since the directions to the fixed stars refer to 
the center of the unit sphere at the center of 
projection, the coordinates X0 , Y0 , Z 0 of (148) and 
(149) are set to zero. Furthermore it was shown 
toward the end of sec. 2.3 that the coordinates 
expressing the direction to a star can be trans­
formed to standard coordinates{;., Tiro 1 (cf. fig. 24 
and (66), (67) with (61)). This changes (148) and 
(149) into 

F = - l., -l • . E + c.,[r .. {;, + '"71 r + r,al + Xo 

ra~ r + ra21J r + raa 

+ (lx- x,) (K,d' + K,d• +K,d") 

+ {2(lx- x,) (l;;- y,)sin <PT + [3(1,- x,)' 

+ (I;;- y,)2] cos <PT}(K4 + K 5d2) = 0 

G l 
c.[r,,{; r + '"71 r + r23] = - • + +yo 

rs.£ r + Ta2TJ r + Taa 

+ (I;;- y,) (K,d' + K,J• + K 3d") 

+ {[3(1•- y,)2 + (lx- x,)2]sin <PT 

(158) 

+ 2(lx - x,) (l;; - y,)cos 'PT }(K4 + K,d") = 0. 

(159) 

. We note, first of all, that right ascension a and 
declination 8, together with their mean errors, are 
given quantities. Consequently it is necessary to 
minimize the sum of the V<1Ja + Vl/lo), weighted in 
accordance with the weight matrix P "·' given for 
the stars, not the sum of squares of the v, and v" 
residuals. To accomplish this the {; r and "'r are 
differentiated with respect to a and ll, and the 
coefficients in the observation equations used to 
compute the A{; and A71 are multiplied accordingly. 
After appropriate arrangement coefficients are ob­
tained in the observation equations which do not 
refer to the corrections A{; and A71, but to v. and 
v0• Using (66) and (67) one obtains in they' system 

(160) 

(161) 

551-596 
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from which, omitting the index r 

(162) 

(163) 

From (1) with (20), (23) and figure 9 follows: 

x'= ~~]= [-~~:~ ~~=:] W sm8 

[ 
si~ rp' ~ co~ rp'] ~~~ ]· 

-cos rp' 0 sin rp' ~; (164) 

Differentiating (164), noting that dt = -da, gives 

[

-x' 
dx' = xi (165) 

From (23) 

dy' = R(90° - rp')dx' (166) 

which with (165) gives 

dy' 

2 

[ 

-x~sin q;' 
= X~ 

-x~cos cp' 

-(x;cos t sin cp' + cos 8 cos I{J 'j 
x;sin t 

( -x~cos t cos cp' + cos _8 sin q; ') 

X [:J • (167) 

With the relations found in (160), (161) and (164), 
the application of (167) with (162) and (163) yields 

(168) 

(169) 

and similarly, omitting the intermediate st~ps: 

. : = - cos t (1 + g / +'II/) (170) 

: = sin t sin rp' (1 + g," +'II/) (171) 

Other quantities needed are 

oF • dg d'IJ oa =Jz = lz. da + Kz. da (172) 

oF • dg d'IJ 
oS =Kz = Jz · dS + Kz · dS (173) 

oG • dg d'IJ 
oa = 1• = 1• · da + K, · da (174) 

oG =K * =J · dg +K .d'IJ (175) 
oS " " dS " dS 

in h" h dg dg d'IJ d'IJ · · h (168) w IC 00 , dS' da' dS are given wit 

to (171) and }z, J,, Kz, and K, are computed from 
(153) to (155). 

If one accepts the coordinates corrected for 
refraction g r and 1J r' the corresponding linearized 
observation equatiOns can be set up directly with 
(158), (159), and the introduction of (172) to (175). 
Just as the central perspective bundle was altered 
by additional physical influences, the direction 
given with the coordinates g" 'IJ, can be subjected 
to a further refraction correction by further im­
proving the T constants used for the original 
refraction correction. 

In consonance with (40) one can therefore write 

/lr~ = 'fl w( tan ~/l'T 1 + tan3~ /l'T2 

(176) 

Assuming further that refraction does not affect 
azimuth, we have g .hJ, = constant and therefore 

t:.g g, 
ll'IJ = 'II' 

and, in analogy with (66) and (67) 

y'2 + y'2 
c 2 +., 2 = tan2z = ' 2 
~ r ., r r y~2 

Differentiating (178) gives 

Substituting (171) in (179) gives 

llz = llr~ 

(177) 

(178) 

(180) 

551-596 
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(1 + tan2 Zr) , 
Ag = l1r '-''~ tan Zr 

211r A 
. 2 '~ Sill Zr 

(181) 

' . 
= !!. (y'2 + y' 2)--i A r '2 1 2 c:c 

Y3 

= Yz (y'' + y'')--i A r 12 1 2 00, 
Y3 

(182) 

in which Ar ~ is given with (176). 
Taking into consideration (176), (181), and (182), 

and using the designations of (153), the partial 
derivatives of the functions F and G needed in the 
refraction correction are now introduced, giving 

vz 
f3 tan -
2 

aF wz tan3~ 
2 

a .. tan5~ 
. Tz (183) 

xz 
2 

Yz tan7 ~ 
2 

v* v!a li:ll i.. 

v. f3 tan-
2 

w. tan3~ 
ac 2 
-= 

tan5~ 
.... (184) a .. x. 

2 

Y. tan7~ 
2 

where 

T =TI W lzY; +KzYz =TI W 2(!zl1r+KzT/r) 
:r y~2 (y? + y~2) i sin '2zr 

and 

(185) 

Tl W 2(1 ul1 r + KuT/ r) 
sin 2zr 

(186) 

with T and W as in (40). 

A 

A* 
A 

The observation equations (151), (152) for the 
single camera are therefore set up in accordance 
with (158), (159), (153) to (155) and with (172) to (175), 
(183), and (184). Since the skew of the comparator 
axes e is always small the term v1,, e is negligible. We 
thus have the system of observition equations 

Avu + 1 = 0 (187) 

with the weight matrix Pu = m5au -t, where, in 
general, we have for each pair of observation 
equations 

A * 
AO 

lz l. a' s "' "' K Cz c. Xo Yo K, K 2 Ka x, y, K4 K, 'f'T € .. , T; ... ... 
A= -1 - J~ K~ Ax Bz cz Gz - Hz Jz Mz Nz Oz pz Qz Rz Sz Tz uz vz wz xz Yz 

- _, J; K; A. B. c. - c. H. I. M. N. o. P. Q. R. s. T. - v. w. x. Y. 

-.A, ;!.. 8 Ba,ll 0 

v 
a 1 = right ascension B 

(188) 



HellmutH. Schmid 45 

l is computed [cf. (151), (152)] from the approxima­
tion and measured values as 

(189) 

I I 
pl11.b! 0 I 0 I 0 
----L ___ .L ___ .[ __ _ 

I I I 
0 I P •• I 0 I 0 

I ' I I Pu = ----r----r---T--- (190) 

0 : 0 : P, : 0 
----r---T---~---

1 I I 
0 I 0 I 0 I P, 

Theoretically, the P. matrix (190) could be 
completely filled but it is necessary to normalize 
all weights with respect to a selected value for m0 
and, in ad-dition, the mean errors of the rotation 
parameters must be in radians. This makes it 
possible to account for all existing correlations. In 
practice however, as indicated in (190), there are 
uncorrelated groups since no correlation exists 
between the a, matrix specifying the accuracy of 
compara~or measurements, the u a,li matrix specify­
ing the accuracy of the star coordinates, the u 0 
matrix specifying the accuracy of the other, chiefly 
photogrammetric, parameters and the aT matrix 
that specifies the accuracy of the refraction deter­
mination. 

Since in what follows it will be repeatedly 
necessary to compute accuracy criteria, the mean­
ing of the various designations used will now be 
explained. 

2. 7 .4.1 Measures of accuracy before adjustment 

The mean error of unit weight arbitrarily fixed 
before the adjustment is m0 . The mean error of a 
measurement i is designated mi. Hence 

m~ 
p, =-

m,' (191) 

p= •' 

The corresponding weight matrix, e.g., for the 
comparator measurements lr, l11 is 

ph= r Ptr Pzz.v] = m~ [UZ~z O"fz.vr
1 

= m~o;,-1 
lPtz.v Pt11 O"lz.v afv 

092) 

with O"tz.v = (pz,u Uzz u111 ); Px.u denotes the correla­
tion coefficient which = 0 for comparator meas­
urements when the comparator has independent 
mechanisms for measuring x and y. 

2. 7.4.2 Measures of accuracy after adjustment 

The mean error of unit weight after the adjust­
ment is 

-( v*Pv) -1 s,- -­
n-u 

(193) 

and the mean error of an observation after the 
adjustment is 

(194) 

With respect to the unknowns u computed in 
the adjustment there exists the relation 

Su,.u,. 

~--------~------~ 
Covariance matrix 

(195) 

in which s.,.., = Pus.,s..,. With (193) and (195) we 
obtain 

(196) 

Omitting the index u in order to simplify the 
notation ,we have su = PuS,SJ and the dimensionless . 
correlation matrix that corresponds to (195) is then 

1 Pu 
Pu 1 

1 

(197) 
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in which all p11 = 1 and the numerical values of 
the correlation coefficients Pu as well as that of the 
determinant lpllie between 0 and 1. 

Finally it is desirable to compute the axes and 
orientation of error ellipses and of the error 
ellipsoids arising in connection with the spatial 
triangulation to be discussed later. In a solution 
designed for electronic computation it is conven­
ient to treat the relatively simple two-dimensional 
case as a special case of the three-dimensional 
solution here given. 

On development of the determinant, the charac­
teristic equation 

(198) 

becomes a polynomial equation in A, the eigenval­
ues of the covariance matrix. 

A3 -rA2 +sA- t = 0 (199) 

The lengths of the semiaxes of the error ellips­
oid are square roots of the roots, AH A.2 , A3 of this 
equation. To obtain the direction cosines of the 
axes the eigenvectors x 1, x 2, and x3 are computed 
in 3 separate steps by substituting in turn each of 
the A1.2.a values in (198) and solving the 3 sets of 
simultaneous, linear, homogeneous equations: 

Sz.z] [X'~ Su.z Xf2 = 0 
s~-A x, 

(200) 

Each of the three solutions (:<.,, x,,, x,,) contains 
a free variable with which the vector x. can be 
expressed in length A, or as a unit vector, thus 
defining the direction of the axis. The procedure is 
described in [ 40]. 

For the two-dimensional case the 2 X 2 covari­
ance matrix is extended to a 3 X 3 matrix by 
introducing the number l, or any other number, as 
the third diagonal term and zeros for the other 
additional entries to account for the fictitious third 
dimension. The capacity of the larger electronic 
computers makes it attractive to Qesign a program 
which can compute eigenvalues and vectors for the 

i 

· n-dimensional case. However the computational 
effort increases with the third power of n. 

N 

If maximum accuracy is desired in satellite 
triangulation it is necessary to recalibrate the 
camera for each event. Hence P 0 is a null matrix. 
The need for an additional refraction correction is 
questionable because of the existing correlation 
between the T values and the elements of exterior 
orientaiio~, especially when the cameras are 
equipped with objectives requiring small viewing 
angles. When the <lT, corrections are not computed 
the P u matrix consists of only the P1 and P •·• 
portions. As shown in (188) A1 is always a unit 
matrix. Introducing, for the moment, P o:,a as a null 
matrix and with P 1 from (192), the normal equa­
tions system corresponding to the observation 
equations (187) is 

m m 

L [B*P,B],~ + L [B*P,IJ. = 0 (201) 
i=l i=l 

m = number of star images. 

Each pair of observation equations for an indi­
vidual star image i contributes to the normal 
equations system (201) in the following manner: 

BfP1, B,~ + B*P,, ~ = 0. (202) 

Subdividing the B matrix further by using the 
notations introduced in (188) results in the follow­
ing scheme for (202) 

Vo:,a .6.o 

[ 
(B:. 0P1B •. 0), (B:. 0P1B,),] 
(BtP,B •. 6), (BtP,B,), 

= 0. 

(203) 

The accuracy of the given a, B values expressed 
with the P o:,a matrix is, in accordance with the 
concepts developed in [39], taken into considera­
tion by replacing the term (B •. 6P 1B •. 6), in (203) 
with 

(B:.aP1B •. a + P •. a),. (204) 

Elimination of the Vo:,ll vector reduces the normal 
equations system to 

L [BtP,B,- BtP,B •.• <B: .• P,B •.• + p •.• )-l B: .• P,B,J, ~.+ 

[BtP,I - BtP,B •. .<B:. 0P1B •. o + P •. 6)-1 B:. 0P11], = 0. 

-AI (205) 
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From (205), finally, the vector ~ of parameter 
cm:re"ctions is obtained as 

(206) 
and 

0 = 0 0 +.<1 0 (207)' 

as well as the mean error of unit weight .after 
adjustment from (193). 

In consequence of the fact that in linearizing the 
original functions F and G, terms of the second 
and higher order were neglected, the result of an 
adjustment must be iterated until the change in 
v*Pv in successive iterations becomes equal to, or 
less than, a prescribed tolerance. 

The treatment of given right ascension and 
declination values in the above manner allows the 
determination of unknown star coordinates by 
simply introducing the P 0,3 matrix as a null matrix. 
It is, of course, necessary in this case to find 
adequate approximation values (a., a.) to replace 
the normally given a, 8's. 

Although the determination of the coordinates of 
unknown stars is merely incidental to the problem 
at hand, the use of uncatalogued stars contributes 
to the calibration of the camera whenever such a 
star is photographed at sufficiently large intervals 
of time and at least twice. The corresponding 
angle of the Earth's rotation can be introduced into 
the adjustment by means of the associated instants 
of time to help fix the geometry. Thus the images 
of such stars furnish additional data and contribute 
in a small way to the determination of the 
parameters of interior orientation. In satellite 
triangulation it is scarcely possible to gain any 
advantage from this, because the total period of 
observation of an event, i.e., the interval elapsing 
between the pre- and postsatellite pass star 
recordings is deliberately held to a minimum in 
order to reduce the probability of changes in 
environmental conditions. Experience has ·shown 
that elimination of these changes is not always 
possible, especially when the requirements for 
accuracy are high. 

For that reason an observation technique was 
developed to detect small variations in camera 
orientation occurring during the normal 20- to 30-
minute period of observation. The method provides 
for star observations during the actual period of 
transit of the satellite, as well as before and after. 
Since there is no choice but to assume that the 
elements of interior orientation do not vary signifi­
cantly within the period of observation, a mathe­
matically closer simulation of the actual situation 
is obtained by computing three separate and 
independent exterior orientations, one for each of 

the three periods-before, after, and during the 
transit of the satellite across the camera's field of 
view. The single camera observation equations 
(187) are therefore augmented to include three sets 
of corrections to the exterior orientation .6.a, Aw, 
IlK instead of just one subset. The first term in 
(205), schematically represented, will then have 
the form shown in figure 33. 

In order to increase the internal accuracy of the 
photogrammetric measuring process, particularly 
to minimize the influence of the emulsion and 
scintillation effects, a sequence of (usually) five 
consecutive single images is measured for each 
star. This means that each of these lx, lu coordi­
nate measurements has its individual residuals, 
but only one pair of corrections to the star's right 
ascension and declination values may be postu­
lated. Hence, for a star recorded n times it is· 
necessary first to construct the partial normal 
equations system (203) as the sum of the corre­
sponding n subsystems, followed by the addition of 
P ••• just once in accordance with (204) before 
continuing the computations with the elimination 
of the v. and v. to set up the final normal 
equations (205). If llT corrections are to be com­
puted it .is advisable to first carry out a solution 
without the llT, to avoid the unfavorable influence 
of existing correlations on the numerical adjust­
ment. In a final iteration the llT will then be 
included as additional unknowns to produce the 
result. If measurements of unknown stars are 
included in the system, it is best not to set up 
coefficients for refraction corrections in the rele­
vant observation equations, because of the limited 
geometrical content of such equations. 

Whenever, for example, values for certain pJ;to­
togrammetric parameters, as determined from an 
independently executed camera calibration e, are 
to be introduced together with their measures of 
accuracy into the adjustment, the corresponding 
weight matrix P"' (cf. (196)) 

(208) 

must be added to normal equations system (205). 
It must be borne in mind that this P0, matrix has 
reference to the given values which are appropri­
ately used as approximation values in the first 
iteration. Since in the course of the iteration, 
however, .the approximations for the 0 0 vector 
undergo changes, a modification of the vector of 
absolute terms in the normal equations system is 
necessary at each iteration step in that a vector 

(209) 
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11* 0 

Figure 33.-Schematic of the reduced normal equations system. 

is added to the Ill vector for that iteration, where 

lllo, = o,, - o •. (210) 

The purpose and effect of this operation is to 
initialize the Oe components of the 0 0 vector to 
their given values before proceeding with the next 
iteration. For parameters that are not given the 
Aloe vector has zero components. 

It can be argued that the determination of three 
different sets of orientation parameters does not 
lead to an optimum solution in cases where the 
exterior orientation of the camera does not change 
at all d1,uing the entire observation, so that only 
m:te or two sets of a, ru, K are justified. For this 
reason we frrst compute directions in space for a 
number of fictitious ·images along the plate diago­
nal, using the results ·of the present solution. For 
each of the fictitious point images whose coordi­
nates x, y are assumed free of error, three unit 
vectors corresponding to the three orientations are 

computed by use of (81) in they' system: 

,, = R' ( w ) ~ YJ=t.z,a uJ-t,z.a a, ,K JpJ (211) 

where 

(212) 

and 

IPi=[:x•+(<:)" +c~r (213) 

In accordance with (107), premultiplication of 
the y'J~l.2.3 vectors with R(270' +</>')yields the cor­
responding x'1• 1,2,a vectors. With ·the y' or x' vec­
tors, as the case may be, compute the corresponding 
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e and 1J values with (28) and the azimuths and zenith 
distances or hour angles and declinations with (29). 

Next, compute the small angle EJt between ·the 
computed directions for each pair from the 
yj ... 1,2,3 or xj=1,2,3• For the combination 1,2 in an x' 
system one obtains, for example 

(214) 

or, in radian.s, 

E 1,2. = [(x~~ - X~1 )2 + (x~ - x~)2 + (x~ - x~)2]l. 
(215) 

If the differences between corresponding right 
ascensions and declinations or azimuths and zenith 
distances, so computed from the three orienta­
tions, exceed their confidence limits, a timing 
error or camera motion may be the cause. Before 
one can decide whether these computed differ­
ences in direction are significant, one must find 
the mean errors of either the ditectfon components 
(a, 8) and (,4, z) or at least of the angles EJt• which 
can be looked upon as combinations in pairs of the 
computed (a, 8) or (A, z). 

Since a and 8 are parameters of the mathemati­
cal model on which the adjustment is based, ·the 
~ollowing solution is offered. Using (204) and taking 
mto account the considerations leading to (202) 
and (203), the. first term of the normal equations 
system (201) can be represented schematically as 

it follows from (217) that 

Qu = Au-• + Au-•A,.N-•AfzAu-•· (220) 

From the sche_matic shown in (216) it follows 
that the computation indicated with (220) can be 
performed in independent steps for each individual 
pair i of values a, 8. Hence we can write 

s2,., •• = sg[(B:,.P,B •. • + P •.• )i1 

+ (B:,.P,Ba,& + P •.• li' (B:,.P,B,)1N-• 

x (B,*P,Ba,&h (B:,.P,Ba,& + P.,.)j1
]. 

(221) 

With (22Ir we obtain the covariance matrix for 
the corrected values of a, 8 for the stars originally 
selected for the adjustment. If the star in question 
was originally unknown it is merely necessary to 
set the relevant P a,& equal to a null matrix and to 
introduce the correspon~ing Pl matrix which must, 
of course, relate to the initially chosen m0 value. 
In the present case a further simplification is 
present since the Ba,B matrix is quadratic and 
nonsingular, hence invertible. The covariance ma­
trix for an originally unknown star is therefore 
from (221) 

"•·• = s~(B;;:~P,-•B~.~· + B~,',.B0N-•BtB~.~*). 
(222) 

Finally, to compute the accuracy of a direction 
defined by a fictitious, errorless point the p-• 
matrix in (222) becomes a null matrix resulting in 

s~.• = s~(B~,'.B,N-•BtB~.\*). (223) 

(B:,aP,Ba,a + Pa,a)t j 0 f 0 (B!.aPrBoh 
----------------------:..,.;,----:------------------------ ------r--------

---------g-----------1-~~'-'hs!.~P,B~~-.;.-p~:;);,; ·co~;~,I,~i~--
' ' : ---
' ' 

Designate the inverse of the matrix (216) as 

[ 
Au A,.l-• = [ Qu Q,.l (217) 
A,. A,,] Q,. Q.J . 

From (216) and (217) it is apparent that for the 
inverted normal equations system of (206) 

[Azz - AtzAu-1 A,.J-• = N-• = Q,2 • (218) 

Furthermore, since 

(219) 

I m 

I (Btp,B,i, 
f=t 

(216) 

The formula (223) is now applied for a selected 
fictitious point to the three orientations obtained 
from the solution of the system (205). The resulting 
covariance matrix s~.a is of dimension 6 x 6. The 
three 2 X 2 submatrices along the diagonal are the 
three covariances s2ca.3>J=t,2,3 associated with the 
three sets of a, 8. The an3.logous covariance 
matrices of the azimuth and elevation components 
are obtained with (107) as 

s2 (A, z1~ 1,2,3 = R(90°- cp) s2,.,1J),.,.. R*(90°- cp). 
2 . 2 

(224) 
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Finally the variances sf1, s§2, s§1 of the three E 

angles of (215) are the diagonal terms of the 
covariance matrix 

s2 = F*s' F 
1 

f. a,6 (225) 

w.here 

a. a. 
aa, 0 all, 
a. a. 
all, 0 all, 
a. a. 

(226) 
a a, aa, 0 

F= a. a. 
all, all, 

0 

0 
a. a. 
a a, aa, 

0 a. a. 
all, all, 

In (226) for each combinationj, k: 

a. 
aa1 
a. 
all, 1 
a. =-

.Jk 
a ... 
a. 
all k 

If allJE 1,2,3J exceed the corresponding quantity 
Ks~, (where K is a constant selected on the basis 
of personal experience) then it must be assumed 
that the camera orientation has changed during the 
three observation periods. In this case the second 
solution indicated in the schematic of figure 33 will 
be accepted as definitive, this being the orienta­
tion corresponding to the stars recorded during the 
satellite transit. 

On the other hand, if certain values of E are less 
than the corresponding K · s, then these orienta­
tions can be combined. Thus 

If: E12 < Ks,
1
.z, combine orientations 1 and 2 

6.ta < Ks£
23

, combine orientations 2 and 3 
••• < Ks,,., combine orientations 1 and 3 (228). 

The result is obtained as shown in [40] in the form 

~ o = [N-•- N-• C* (CN-• C*)-• CN-•] 

(229) 

where N-• and ~I are from the last iteration in the 
solution of the original system (205) and 

1 0 0 - 1 0 0 0 0 0 
0 1 0 0- 1 0 0 0 0 

C= 0 0 1 0 0 - 1 0 0 0 0 0 0 0 1 0 0 - 1 0 0 
0 0 0 0 1 0 0 - 1 0 
0 0 0 0 0 1 0 0 - 1 

(230) 

C is a 6 X 0 matrix (0 = no. of components of 
the 4 0 vector), the first nine columns being as 
indicated and the balance of the matrix consist!ng 
of zero entries. The form of the 6 x 9 portion will 

(227) 

vary according to the results of the criteria (228). 
The form in (230) corresponds to the case of 
combining all 3 orientations. For such a case, 
furthermore, 

a~- a~ 
cug - (I)~ 

I= 
1d- K~ 

(231) a; -a; 
rug - Cdg 
Kg -K; 

The values with the superscript "o" are the 
approximation values used in the final iteration in 
the solution of the system shown in figure 33. The 
correction vector computed with (229) pertains to 
these approximations. The final result is then 
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computed with (229) and (207). 
The last phase of the computations covers the 

partial results, and a summary of these results 
now follows. Values for distortion at a prescribed 
interval, e.g., in 3-mm steps, are computed to a 
maximal radial distance dmax dictated by the plate 
format. If the radial distortion for a prescribed 
distance d0 is to be made equal 0 the correspond­
ing camera constant c* is computed with 

in which 

c* = c, + Cu (1 - K0) 2 
(232) 

K 0 = - (K1d0
2 + K,d0 

4 + K,do''J (233) 

The radial distortion is then computed succes­
sively for the required distances d with (95). The 
transformed radial distortion corresponding to c* is 

(l!.R) = d·K0 + !!.R (234) 

Values for the decentering distortion are computed 
similarly with (99). 

If it is desired to study the values of astronomic 
refraction within the range of the photogrammetric 
exposure, they can be computed from (40) as a 
function of z in suitable intervals, either with the 
given or the newly computed T values. 

Computing distortion and refraction values is of 
particular significance when star obServations are 
evaluated for the calibration of photogrammetric 
cameras or used in error studies of individual 
photographs. In satellite triangulation the compu­
tation of such data is highly advantageous for the 
purpose of gaining insight into the behavior of all 
cameras in use, in view of the fact that the· 
photogrammetric registration in a continental, and 
especially in a worldwide net, is exposed to 
extreme ranges of local and seasonal environmen­
tal conditions. It is. therefore required to be 
informed as to the reliability and metric quality of 
the instrumentation used and it is also expected 
that a systematic ~tudy of these results will allow 
the drawing of conclusions with respect to the 
individual photograms. 

Finally we must compute the corrections to the 
given values resulting from the adjustment, the 
statistical measures of accuracy, such as the mean 
error of unit weight, the mean errors of the 
computed quantities as well as mean errors of 
values, computed as functions of those quantities. 

Corrections to the measured images are com­
puted with (189). With the parameters obtained in 

the adjustment one has 

Vz.n = F, 
Vzlli = G,. 

(235) 

To get a better picture of the distribution of 
these residuals it is useful to compute the radial 
and tangential components of these corrections. 
Computation of the corrections Va and v6 for each 
given star is carried out with (203), (204) where, 
now, 4.0 is a z~ro vector: 

v'"·"" = - (B: .• P1B •. • + P •.• ),-1 (B: .• P1l)1• 

(236) 

Wherever quantities, introduced by means of 
approximations into the adjustment, differ from 
free variables, in that corresponding entries in the 
Pu matrix (190) (cf. also (208)) represent a priori 
given weights, relevant corrections are computed, 
using the results from the adjustment, from 

(237) 

where u stands for the adjusted, and u0 for the 
initial value of the parameter. Next one computes 

LvfPzVz + Lv:, 3 Pa,ISYa,ll+ Lv:Puv11 = Lv*Pv 
(238) 

and in accordance with (193) the mean error of 
unit weight after adjustment s0 with 

So= [ L v* Pv]'. (239) 
n-u 

The mean errors of the computed parameters 
are obtained by multiplying s0 with the square root 
of the corresponding diagonal term in N-1 of (206). 
The mean errors of the given quantities result 
from dividing s0 by the square root of the weight 
assigned to the quantities. 

The mean error of the camera constant (232), as 
well as the mean error of radial and d~centering 
distortion are computed as mean errors of func­
tions of quantities determined in the adjustment. 
In general the mean error sa of a quantity a 

a = F(u) (240) 

is 

(241) 

in which fa is the vector whose components are 

the part1al derivatives iJ~~uJ, the components cor-

responding to parameters not present in (240) 
being zero. For the cases i.n question here, 
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a! 

aK, aK2 aKa 

f* = c 
1- K 0 

2 
_ Cz + CJI 

. d~ 
2 (242) 

a! a! 

aK, aK, aKa aK, aK, aKa 

ft, = da d' d' . d(d' - d~) d(d4 - dg) d(d' - dg) 

(243) (244) 

a! of 
aK. a K, 

aT, aT, UTa· OT. 
f1T= d' d· 

(245) £1= Ti W tan!'! Ti W tan at'! Ti W tan'/'! Ti W tan'/'! 
2 2 2 2 

Substituted in (241) the components computed 
with (242) now give the mean error of the camera 
constant c*, with (243), of the radial distortion at 
the selected distances d, with (244), of the radial 
distortions corresponding to camera constant c*, 
with (245), of the decentering distortion, and with 
(246), of astronomic refraction as function of 
selected zenith distances. This concludes the com­
pUtations in connection with the reduction of the 
single camera. 
· In preparation for the next series of computa­

tions the orientation matrix R~(a,co,K) during the 
satellite pass must first be transformed from the 
local y' system into the· final z or z' system that 
has been selected for the eventual spatial triangu­
lation. R~(a,w,K) results from (79), either with the. 
second group of elements of orientation in the 
schematic of figure 33 or, in accordance with the 
principle of combination of (228), from a group of 
orientation elements that also includes star record­
ings simultaneous with the satellite transit. 

The necessary transformation is accomplished 
with (30) and (108) or (109), so that we have 

R;(a, w, K) =R(~ .. ,), (90°- cp) R(-x, -rl 
a 2 2 

R(270° + cp'), (- ~ .. ,) R; (a, w, K) 
2 a . 

(247) 

and with (79) for example, 

cos a z' = r33/cos w z' 

sin OOz• =- r23 

cos Kz• = r22 /cos Wz• 

(246) 

(248) 

The reduction, just described, of a single obser­
vation of stars is suitable, on the one hand, for a 
camera calibration and, on the other, it represents 
one of the intermediate steps in the process of 
photogrammetric satellite triangulation. A descrip­
tion in detail, with flow charts of these programs, is 
given in [42]. The arrangement of the latter is in 
accordance with the present practice of the Na­
tional Geodetic Survey for the adjustment of the 
single camera in connection with satellite triangu­
lation, as well as for the calibration of aerial 
cameras. It was unavoidable to keep this program 
from being influenced by the development of the 
method. It does not therefore follow in all respects 
the presentation given here. However, all the 
operations so far described, as well as some 
additional, somewhat less essential computations 
are included, based in part on formulations of 
spherical trigonometry. The orientations of coordi­
nate axes artd definitions of the sense of rotation 
differ; in some cases from the descrip! ions above. 

We now list the intermediate results from the 
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single camera program that will be needed in the 
next reduction step. 

a. The parameters set up to reconstruct the 
photogrammetdc bundle and computed in the 
adjustment, namely 

(1) the elements of exterior orientation (awK),• 
referring to the local y' system, and 

(2) in the general case, the parameters: E, Cz, 

c11 , x0 , y0, x,, y,, Kb K2, K3, K4,K5, lfJr, Tt, T2,. 'Ta, T4. 
b. The elements of exterior. orientation referred 

to the· ultimate triangulation coordinate system, 
i.e., either (awKlz or (awK),•. 

c. The mean error of unit weight s0 • 

d. The inverted normal equations system N-1• 

e. Meteorological data at the observation site 
during the satellite observations. 

f. All data necessary for the identification of 
observation sites and instrumentation. 

g. All supplementary information needed for 
time determination of the satellite images. 

2.7.5 Spatial Triangulation 

2. 7.5.1 Preliminary computations 

The principal problem of geometric satellite 
triangulation is the determination of three~dimen­
sional, rectangular coordinates for the observation 
sites, the triangulation being executed in either the 
z or z' coordinate systems introduced in sec. 
2. 7.2.6. In preparation for these computations the 
treatment of the single camera (as described at the 
end of sec. 2. 7.4 includes, among other things, the 
transformation of the elements of exterior orienta­
tion to (awK)z or (awK)z•· Now, in order to triangu­
late, it is necessary to determine, at each of the 
stations which have recorded simultaneously a 
specific satellite pass, at least one direction associ­
ated with a specific satellite location in space. Just 
as the elements of exterior orientation of all 
photograms must refer to a consistent coordinate 
system, all the directions obtained with such an 
orientation must be with respect to unambiguously 
defined target points in space. 

This requirement is filled by reducing all meas­
ured image coordinates to a rigorous central 
perspective and then applying all the corrections 
explained in sec. 2.5. 

Reduction of the plate coordinates lz, 1. to a 
central perspective is accomplished with (141) and 
(142). The expressions for llRz, llR., I!J.Tz, llT. are 
computed from (97), (98) and (103) using (143) to 
(147) and, as indicated on page 41, with an 
iteration loop. The coordinates I;; and I;; so ob­
tained correspond in measuring to (138) and (139), 
and must still be reduced to a common scale 

factor. If in (138) we set Cz = c we obtain, in 
agreement with (212) 

(249) 

and 

Cz 
1-=1-·-

llc 11 c
11 

(250) 

The image coordinates lrc' llic refer to the 
principal point and the scale factor c, i.e., to the 
idealized central perspective. Before these ficti­
tious point images can be used in a spatial 
triangulation they must be corrected for the influ­
ences cited in sec. 2.5. These corrections can be 
classified under the groupings: 

a. Refraction, subdivided into astronomic and 
parallactic refraction 

b. Eccentricity of the target and 
c. Time corrections, subdivided into clock cor­

rections and light propagation effects. 
In the course of the reduction the influence of 

scintillation is largely eliminated, at the appropri­
ate place, by smoothing the sequence of individual 
images of the satellite trail with the aid of 
polynomials. 

The computation of some of these corrections 
requires an approximation to the distance between 
the camera site and the satellite. To effect these 
corrections the coordinates I;;; , I;; ((249) and (250)) 
and the llu•(a,w,K) matrix fr~m the single camera 
are used to produce the unit vector y; from (81) 
and the corresponding standard coordinates f r' TJr 
with (28), and then, with (29), the observed zenith 
distance Zr. The astronomic refraction roo follows 
from (40) by iteration. The unit vector y' corrected 
for astronomic refraction is computed with ( 42) 
where, as explained on page 20, r, is replaced with 
ro:., ·or, alternatively, directly with 

z = Zr + r<:<> 

and (74), in the form 

(y') = [ 
cos z cos A] 
cos z sin A 

sin z 

(251) 

(252) 

In this the azimuth A is derived from (29). With 
(y') new vaiues for(; and 71 are derived from (28). 
With these and using c = Cz, image coordinatfH. 
are computed from (85) and (86), taking the 
direction cosir..~s ru from R~(a,w,K) and substitut­
ing {;, "'• 1 for X - X0 , Y- Y0 and Z - Z0 
respectiveiy, After all satellite images of a given 
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photogram have been so reduced, the coefficients 
for polynomials (58) are determined from an ad­
justment in accordance with (266) to (270). With 
these polynomials the l:xe and luc are expressed as 
functions of station-clock time t. Omitting the 
subscript c we have then, quite generally 

l:r = .f(t) (253) 

Iii= g(t) (254) 

With the notation of figure 16 we obtain obser­
vation times referenced to an unambiguous time 
designation by adding to each locally recorded 
time t the corresponding clock correction t::.T, 
which rarely exceeds 10 ms. The normalized 
instants of time TJ recorded at stations 
j

1
,
2

,,,,,m will then be t.z ..... m 

T -t ll,z, ...• m - h.z ..... m + flT,, 2 ••• ,m (255) 

In order to obtain an instant of time that is as 
close as possible to the range of times recorded at 
each station, we form the arithmetic mean of the 
T's and convert this mean to corresponding inter­
polation times referred to the individual station 
clocks. Thus 

flTJ l.2 •...• m • {256) 

Based on the relevant t value at each station, tz, 
I;; values are computed with (253), (254) for points 
along the satellite trail which, since light propaga­
tion time has as yet been neglected, refer to 
simultaneous instants of exposure. 

Next, approximate satellite positions are com~ 
puted with these data. The camera site coordinate 
approximations (<p 0 , A 0, h0) are, with (111), (112), 
(113), transformed to rectangular coordinates in 
the z system or, if necessary, by the additional 
transformation (36) into the z' system. With the 
~(a,ro,K) or ~·(a,ro,K) orientation matrices men~ 
tioned previously and the interpolated 1;;;, I;; coordi­
nates, once these values are available for all 
stations, approximate satellite positions can be 
computed, using for an intersection with m rays 
(cf. e.g., [43]): 

0 

(257) 

The Z31 , 2 •... m are the approximated coordinates 
of a point on the satellite's orbit. As an auxiliary 
computation, one forms with (79) 

rulz + Tztlii + ratC 

r,.Jx + r,.Ju+ 'aac 

rl'Jz+ rzJ.u+ TazC 

r,.Jx + r,.Jii + 'aac 

hx = - (a,zj + z1) 

(258) 

(259) 

(260) 

(261) 

where Z 0 
1, 2 ,3 are approximated rectangular station 

coordinates. The distances between an observation 
station and the satellite positions are 

d = [(zl', - z'i'f + (4,- z!l'f + (4,- z'!,)'].l 
(262) 

Instead of storing the large number of distances 
corresponding to the 500 to 600 satellite positions, 
it is preferable to express d as a function oft. As 
with the functions (253), (254), we again use (58) 
with one expansion for the d. This results in one 
polynomial for each station or, in general, 

d = h(t). (263) 

We now resume the reduction of the results 
obtained with (249) and (250), computing first the 
satellite refraction r, with (41) and using (263) 
along with the previously computed astronomic 
refraction r a;· Then follows the unit vector y' 
corrected for refraction, from the refracted vector 
y; by use of (42) or (252), where now 

(264) 

Reduction of the y' vector is continued with the 
elimination of the influence of eccentricity of the 
target point. 

After the unit vector y'0 in the direction to the 
Sun has been computed, in accordance with (54) 
and the Sun's right ascension and declination at 
the instant of observation and the use of (20), (21), 
(23) and (24), one obtains the unit vector y'BM to 

. the center of the balloon with (52) and (49) in the 
form 

,_,a('+ ') 
YBM- Y --d-.- Ye cosyy 

smy 
(265) 

in which the needed quantities are derived from 
(263), (~0) or (51) and (46). 

With the ve<"tor (265) corresponding (;, "'I values 
are again computed with (28), as are lz, lu 
coordinates of the corresponding fictitious satellite 
images using the R,•(a,w,K) matrix in the manner 
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described on p. 53. With these values in (58) the 
final interpolation polynomials are set up which, in 
complete analogy with the expressions (253) and 
(254), represent l;; and l;; as functions oft (cf. also 
sec. 2. 7). In reference to the degree of the 
polynomials note the remarks following (58) (cf. 
also sec. 3.1). Normal equations corresponding to 
the equations (58) are set up in order to determine 
the polynomial coefficients where, to simplify the 
numerical calculations, the t values, assumed free 
of error, are replaced with a sequence of integers 
whose increment corresponds to the greatest com~ 
mon. divisor of the interval recorded at the various 
stations involved. the normal equations system for 
n images has the form 

Ic 
n ~.---'----
I [B;"P,Brl, c = I [Br*P,IJ, (266) 

i = 1 f = 1 

in which P1 is expressed with sufficient accuracy 
in terms of the weight matrix assigned to the 
original coordinate measurements [cf. (192)]. For 
an m •• degree polynomial Br is, from (58), for each 
of the n points 

B,, 
' ' l ti t1 tf tf' 1 0 
' ________________________ L ______________________ _ 
; 
' ' ' 0 ! l t, t[ q . tf' 
' ' 

c is the vector of coefficients to be determined 

c* = [a.,a,a.a3 ••• am b0 b1 b, b3 ••• b,;,] 

and I; is the vector with components 
obtained with the y' BM vector of (265), 

- [l-] J - r 
i- l~ f. 

(267) 

(268) 

(269) 

The solution for the .vector of coefficients c 
follows from (266) 

(270) 

and the covariance matrix associated with the 
coefficients c is, from (195), 

(271) 

The mean error s 0 for the satellite trail fit is, from 
(193) c 

n l J ,:?, (v*P1v)1 l 
12n-(2m+2) 

5 oc (272) 

The individual v values are computed with (58) 
and, with the designations used in (253) and (254), 
are 

Vi= [~:~I = [:;;) ~ ~~ 1. (273) 

If pairs of coordi~ates l;- and l;; for n points are 
determined by interpolation in (58), the corre­
sponding covariance matrix is, in accordance With 
(240), (241), (272) and using the designations 
introduced with (267), 

(sr )' = s~c [~N;;-'Bz *] . (274) 

In order to account for all existing correlations 
the Bpllatrix must be set up for all n points and is 
therefore of dimension 2n X (2m + 2). 

Interpolation for coordinates of fictitious satellite 
images by means of the computed polynomials is 
executed, in agreement with figure 16, by forming 
interpolation times t corresponding to a selected 
sequence of orbital times T with 

t = T- t.T + T(T- .,. (275) 

The TT-OT are computed with (56). The necessary 
distances d are computed with sufficient accuracy 
for the times T-t.T from the polynomial (263). 
Finally the fictitious image coordinates are com­
puted by substituting the interpolated instants t in 
(58), whose coefficients have been determined 
from the solution of (270). After the pairs of 
coordinates for the selected orbital times T have 
been computed, the last reduction iS made to 
remove the effect of Earth rotation that took place 
during the light travel time. As before, a aew unit 
vector y' ~ust be computed from the coordinate 
pairs l;-, l;; just obtained, using (81) and R,•(a,w,K). 
Then, with (60) and the· TT-'T values from (56), 
every y' vector is transformed into its correspond­
ing y; vector. The {inal image coordinates lz, lii 
result from (60) and the use of (85) and (86) where, 
as before, the direction cosines ru are taken from 
R,•(a,w,K), and g replaces X - X0, 1J replaces 
Y - Y0 and the number 1 replaces Z - Z0 • The 
quantities g and 1J are again derived from y; by 
the application of (28). 

Concerning the needed number of directions so 
introduced see sec. 3.1. In any case the selection 
of orbital times T should be such that one of these 
instants corresponds to a point of the orbit whose 
iffiage On the several photograms is as close as 
nossible to the principal point. 

Having completed these preliminary computa­
tions, a pair of image coordinates will be available 

----·-----------------------------
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for each selected point of the orbit and represent­
ing fictitious observations. These image coordi­
nates simulate images that would have been 
obtained had the following conditions been met: 

a. The photogrammetric camera reproduces a 
rigorous central perspective. 

b. The comparator has no linear scale·errors arid 
measures in two perpendicular directions. 

c. The origin of the image coordinate system 
coincides with the principal point. 

d. The observation was executed in vacuo, i.e., 
refraction and scintillation do not exist. 

e. The images correspond to the center of the 
balloon. 

f. Neither Earth nor satellite have a proper 
motion, i.e., there is no influence from aberration 
or time of light propagation. 

g. All station clocks run without error with 
respect to a reference time and the recording 
times of the stars are rigorously UT-1, and 

h. The images at all stations observing a specific 
satellite pass correspond to uniquely defined posi­
tions on the satellite orbital curve. 

After processing of all observed data in the 
manner described, we have at our disposal for the 
execution of the spatial triangulation: for each of 
the observing stations and for all satellite passes 
observed at such stations a photogram, each with 
a number of fictitious image point coordinates lz, 
lu, the relevant scale factor c, and either the 
~(o:,CIJ,K) or ~~(a,CIJ,K) orientation matrix. Since 
orientation matrices are referred to the same coordi­
nate system--either the z or z' system-the spatial 
triangulation can now, with the idealized image 
coordinates l;r, l~ mentioned above, be carried out 
in accordance with the geometrical principles of a 
rigorous central perspective. For this last adjust­
ment step the covariance matrix associated with 
the computed image coordinates will also be 
needed. 

With (274) a covariance matrix was obtained 
relating to the smoothing process of the orbital 
curve. The covariance matrix relating to the single 
cclmera reduction is computed, with the designa­
tion introduced in (188), from (195) and the results 
obtained with (206) and (239) of the single camera 
solution in the form 

(276) 

Since the t'\\ u error contributions are independ­
ent ~f each other, the total covariance matrix for 
the values I,;, Iii of a specific photogram is, with 
(274) and (276), 

(277) 

with the proviso that all computations are with 
reference to a common mean error of unit weight 
(cf. sec. 3.1). 

For each station to be triangulated and for all 
satellite passes observed at the station, the follow­
ing information is now available: 

a. Approximate station coordinates 

<p 0, A 0 and h0 (278) 

b. If given, the weight matrix of these coordi­
nates 

P,., = [::.A p;~A ~::] · 
Pr;,h PA.h Ph 

(279) 

c. Corresponding rectangular coordinates z1,2,3 or 
z;,,, 3 , derived from (111), (112), (113) and, if 
necessary, transformed with (36). 

d. The relevant weight matrices Pz or Pz' from 
(128). 

e. The elements of orientation (o:wK)z or (o:wK)z'. 
from the single camera program ( cf. (248)). 

f. The scale factor c (cf. p. 53). 
g. The fictitious image point coordinates lx, lii 

corresponding to the selected satellite positions 
and associated satellite orbit times. (cf. p. 55), 
and 

h. The covariance matrix (277) of these coordi­
nates. 

The information contained in points a. to h. 
represents the input data for the spatial triangula­
tion proper, the solution and adjustment of which 
is treated in the next section as the final step in 
the evaluation. 

The evaluation procedures of this section and, in 
addition, computations relating to alternative ap­
proaches to these problems, are described in all 
details and with pertinent flow charts in [ 44]. The 
treatment of the subject to this point has demon­
strated the fact that certain computer operations 
must be repeated frequently. For this reason the 
computer programs have been designed from the 
standpoint of optimal economic operation and the 
flow charts in [ 44] reflect a corresponding organi­
zation of the computations. 

2.7.5.2 The adjustment 

As stated above, the spatial triangulation of the 
station coordinates can now proceed 1n accordance 
with the law of central perspective. The mathe­
matical model on which the adjustment is based is 
given with formulas (85), (86) which, with the 
present nomenclature and in accordance with (148) 
and (149), are 
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F = c[(z., - z1) r11 + (z., - z.) r12 + (z., - z3 ) r13 ] 

(z., - z1 ) r31 + (z.,- z2 ) r32 + (z.,- Za) r33 

l;r = 0 

(280) 

G = c[(z., - z1 ) r21 + (z., - z2 ) r22 + (z'., - z3 ) r,3 ] I;; = 
0

. 
(z., - z1 ) r31 + (z.,- z.) r32 + (z.,- z3 ) r33 

The z8 1.2.3 denote the coordinates of a satellite 
position, and z1,2 ,3 station coordinates. In case the 
exterior elements of orientation (awK) are referred 
to the z' system the station coordinates are 
designated as z' without making any other changes 
in the algorithm. 

With the nomenclature of (153) in sec. 2. 7.3, the 
observation equations corresponding to expressions 
(280) and (281) are, according to (151) and (152) 

in which F0 and G0 are computed with approxima­
tions for the station coordinates ~'""' (cf. page 56 
under c) and for the satellite position coordinates 
z.,,, (cf. (257)). The definition of the coefficients in 
(282), (283) is given in (153) to (155). All pairs of 
coordinates lx, lli computed for a given photogram 
are correlated, since all directions to the satellite 
depend on the orientation matrix derived from the 
single camera solution. Furthermore, for a passive 
satellite all the coordinate pairs lx, lii of fictitious 
satellite images are correlated, since they are 
derived from the smoothing polynomials that are 
based on an adjustment involving an coordinate 
measurements of the original satellite images. 

According to (277) (Si,}' is the covariance matrix 
associated with the n sets of lz, lu .derived from 
the photogram taken at station i, observing the 
event j. The corresponding weight matrix is, from 
(196), 

(284) 

If we now set up observation equations (282) and 
(283) for all the directions introduced into the 
satellite triangulation net, i.e., for all the coordi­
nate pairs lz, lii derived from measurements of the 
photograms, taking into ~ccount all existing corre-

(281) 

latiOns as expressed in the Pr matrices, it would be 
possible to form directly the corresponding normal 
equations system. The unknowns of such a system 
would be the coordinates of the observing stations 
as well as of the orbital points. To make the 
solution economically more feasible, therefore, the 
corrections to coordinates of the orbital points are 
eliminated in the formation 'of the normal equa­
tions, thus producing a final normal equations 

(282) 
(283) 

system that contains only corrections to the cam­
era station coordinates. The procedure, which is 
analogous to the elimination of relative pass points 
in numerical aerial photo triangulation (cf. [43]), 
requires a formation of partial normal equations 
systems in the following manner. 

As stated above, the n pairs of coordinates lz, lu 
for a particular photogram are correlated by way of 
the associated P, matrix;- With (282), (283) the 2n 
observation equations pertaining to station i and 
event j are formed first of· all. The normal 
equations system is then formed which is, with 
appropriate use of the designations introduced in 
(282), (283), 

A Z 8h. 2, 3, ••• , n A.zt 

(~;L~!.·1~~l-.. ~--~~r.;~!.J rn Zl t';j.J a.J : Zl .Pr,.JBZ,J 
(285) 

where 

[
.a,.,,] 
Az82 

.:l.z = : 
8Jt,t...... AZa,. (286) 

Each of the partial vectors A.z81 .:z •..• 
11
iS the vector 

-------------------------------------------------------
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of corrections for a specific satellite position. azi 
is the correction vector for the coordinates of 
observation station i. The normal equations system 
shown schematically in (285) must be set up as a 
unit for all the fictitious points computed for the 
photogram in question, since the associated Pr,,1 of 
dimension 2n X 2n is an indivisible unit. 

If a specific satellite event j has been observed 
from m stations, the partial systems (285) are set 
up individually for each of the m photograms and 
combined into the normal equations partial system 
representing the event j, as shown in the sche­
matic arrangement 

a zit. 2, ...• m 

m ' m 

L (B;':sPr,.JBz,)1 (Bz~s~-,.JBz1 )1 .. 1 (B;':sPr,,1Bz,)f=z i (B.:sPli.JBz,t.m 
_ ,::.":.: ___ ------------ : -------------------: -------------------:------ i -----------------

L (Bi,P,,),,J ), 
~:} _____________ _ 

(~~Pr,.JBz,), .. l ~ (Bi.PJ,.JBz,), .. l i 0 i 0 i 0 (B;';P,,),,1 )1~ 1 
----------- ___ --- __ 1 ------------------- r -------------- -----·--- ---~- -----------------

(B;;'~JBz6)1 .. 2 i 0 \ (B;';PrfJBz,)1 .. 2 ] 0 ~ 0 
-------------------I -------------------1 ---------------- --·1·-- ---~·---- -------------

• : 0 : 0 : · .. : 0 
. • : I : I ---------------- ---~--------- -----------:-------------------. ~--- -- -:· -----------------

~~'~; o ; o ;o:~~'~ 

With evident simplification (287) can also be 
written in the form 

[~. ~] [t~" .. " ] = [~I,, ] 
~1,2, .. . ,n ~ 1.1 ..... ~ 

(288) 

Now the correction vector az811 , 2, •• _for the 
satellite positions is eliminated, leaving a normal 
equations partial system for corrections to coordi­
nates of those stations that observed the satellite 
event j. This system is 

[B- C*A-•C] ll.z,,,,, .. .,m 

= [ll.l, - c•A-'ll.l,l 
I L,!, .. ""'" J 

(289) 

or simply 

N,.,,,, ....• ll.z,,,,, .. ,m = 1,,,,,, (290} 

When the partial systems (290) have been 
formed for all events, the final, complete normal 

. equations system for the corrections to coordinates 
of all stations involved in the satellite triangulation 
is formed by adding the individual systems (290) 
according to station· index. The resulting system is 

N,ll.z = I, (291) 

In the present form N, of (291) is singular and· 
not invertible, since no origin of coordinates or a 
scale have as yet been introduced (cf. sec. 2.2). To 
satisfy the first requirement, the introduction of an 
origin or the equivalent, at least three possibilities 
are worthy of consideration. 

(287) 

The simplest is to assume one of the stations of 
the net to be given with its initial coordinates 
z0u,2.aJt free of error. This imposes on the system 
(291) the condition that the corresponding ll.z1 

vector be a zero vector in the solution of the 
system. This is accomplished by assigning the 
approximation coordinates an infinite weight, i.e., 
the quantity 10" is introduced as weight in the 
relevant diagonal terms of (291), n being as large 
as the capacity of the computer allows. This 
causes the .6.z, vector to vanish for all practical 
purposes, since the corresponding entries in the 
N-• matrix will be multiplied by w-n. 

A second possibility exists, especially in connec­
tion with triangulation of a continental satellite net 
in which the observation stations are part of an 
established geodetic reference system. For such a 
case, weight matrices (279) and, after appropriate 
transformation, corresponding Pz or Pz' matrices 
(128) are available as input data. It is then ouly 
necessary to add these weight matrices to the 
system (291) where called for. 

A third possibility, which is especially attractive 
for error studies, is to introduce as origin of 
coordinates the centroid of all adjusted coordi­
nates. This means adding to the system the 
supplementary condition 

I <zO + t>.zl = I z = o (292) 

This will result in a symmetrical distribution of 
mean errors for the net, with modifications de­
pending on the shape of the net. For a further 
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discussion of the problem see [ 46] and additional 
contributions in [47]. 

In order not to endanger the accuracy of the N, 
matrix inversion, it has been found advisable in 
practice to combine these various possibilities. 
Initially, one of the stations is held fixed at the 
origin. After thC Nz matrix inversion the coordinate 
system is translated. The three condition equations 
(292) are replaced by the condition valid for each 
station 

H 

. L z, z, = z, - -- (293) 
s 

where s is the number of stations involved in the 
triangulation. The matrix of weight coefficients for 
the Z values is obtained, since in this case F* = F, 
from 

~-1 = FN-1 F z z (294) 

where the F matrix is obtained as a symmetric 
quadratic matrix by differentiating the right side of 

(293). The coefficients of F are s-1 along the 
1 . s 

diagonal and -- in the spaces where the correla-
s 

tion between the individual components of the 
station coordinates should appear. A sequence of 
operations utilizing the symmetry of the F matrix 
is described in detail in [ 45]. 

The introduction of scale into the triangulation 
by means of measured distance between two or 
more stations of the net is of prime importance in 
satellite triangulation. Such distances can be de­
rived, for example, from long-line traverses meas­
ured with, for instance, a geodimeter (cf. [48] and 
[49]. Designating the two stations i and j, and the 
distance between them d, then 

du = [(z11 - zJI)2 + (z12 - z1:J2 + (z13 - z13) 2]l, 
(295) 

the weight of the distance du being expressed as 

pdiJ = mij 
mdiJ 

(296) 

where mdu is the mean error of the distance d0 in 
meters. With the designation · 

adu 
f*du = -- = 

azu 

8zh 8zi2 8zia 8zh 8z12 8z13 

Ztt -zit Zt2- ZJ2 Z;a -zi:J ZJI -zit ZJ2 - Z;2 ZJa - Zia 

d' d' d' d' d' d' 

(297) 

it is merely necessary in the system (291) to add, 
at the locations corresponding to stations i and j, 
including location ij on the left side, the appropri­
ate portion of the matrix 

(298) 

and on the right side 

(f" P" Lll•)u (299) 

where 

(300) 

and d<iJ is computed with the approximations for zt 
from (295). Any number of scalars can thus be 
introduced into the adjustment. With the expected 
development in measuring distances with lasers it 
should be possible, in the future, to measure 
distances between the observing stations and the 
satellite which can then be similarly introduced 
into the normal equation system (288) before the 
satellite positions are eliminated using (289). 

After the system (291) has been amended with 
the above described two steps-fixing the origin of 
coordinates and introducing scale-the vector of 
coordinate corrections for all the stations in the 
triangulation can now be computed as 

Llz = N;1l, (301) 

and the final result of the satellite triangulation is 

z = z0 + Llz (302) 

From (235), using the z vector and expressions 
(280), (281) the corrections v; are computed, fol­
lowed by the determination of corrections for all 
additionally introduced observations. Thus, for 
example, for a priori given station coordinates 

Vz1 = Llz1 (303) 

and for distances used as scale control 

vdiJ =au- du, (304) 

in which du is computed with the final coordinates 
out of (295), and du is the initially given measure­
ment. 

With these v s and their weights, the mean error 
of unit weight s0 for the whole triangulation is 
computed from 

5 
= [ v;*P;v; + v:P,v, + L P ,vdvdll. 1305) 

0 B+Z+D-S J 
where B = number of observation equations 

Z = number of station coordinates, given a 
priori. with their weights 

D = number of distances given, with their 
weights 
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S = number of all coordinates, of station 
locations as well aS of satellite points. 

If in the course of the observations, e.g., for 
meteorological or logistic reasons, stations must he 
moved a short distance, such dual stations must 
be coupled. Corresponding conditions are intro­
duced and their number is added in the denomina­
tor of (305) just as all extraneous metric conditions 
must be taken into account. With the covariance 
matrix (195), corresponding to the inverted normal 
equations system, and the s0 of (305), the mean 
error of the individual z,,.,3 is obtained with the 
square roots of the diagonal terms of this covari­
ance matrix and, with (198) to (200), the semiaxes 
of the error ellipsoid and their direction cosines. 

This actually completes the result of the satellite 
triangulation, at least from the standpoint of 
photogrammetry. Further processing of the results 
reverts to a strictly geodetic point of view, such as 
the conversion of the computed z values into an 
ellipsoidal system, which can be accomplished 
with (114) to (119). 

If the approximations tp 0 , A0 , h 0 were given 
coordinates a correction vector can be computed 
with (126) 

v~ = T~1 vz 

and the corresponding station covariance in anal­
ogy with (128) 

s~=s~(T;;1 Q, (To"')*)=[::~, 
s~. h 

::::] 
s.' 

(306) 

in which Q, is the appropriate 3 x 3 matrix from 
N-1• In principle we can say that the measures of 
accuracy for all quantities derived from the z 
values are to be computed as mean errors of 
functions of the adjusted z's in conformance with 
(241). In [ 45] the structure of a computing program 
for spatial triangulation is described and the 
necessary flow charts shown. Likewise, all supple­
mentary computations and statis,tical controls 
needed for check and of significance to the 
computations in an extended triangulation 'program 
are explained. 
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3. ERROR THEORETICAL CONSIDERATIONS 

3.1 Error Budget of Geometric Satellite Triangula­
tion 

As shown in chapter 1 the principle of the 
method of geometric satellite triangulation is based 
on combining a large number of individual direc­
tions to satellites in a three-dimensional triangula­
tion. These satellite directions are obtained by 
interpolating the individual images of the chopped 
satellite trail into the framework of the star 
background present on the photograms. 

Directions to the star images are first computed, 
basically as functions of the observing datum, the 
time of observation (UT-1), and the instantaneous 
pole coordinates. These dire·ctions are referenced 
either to the astronomic right ascension-declination 
system for a specific epoch (x system) or, after 
appropriate rotation, to an Earth-fixed, three­
dimensional reference coordinate system (y or z 
system) in which the observation station locations 
are to be triangulated (cf. sec. 2. 7.2). 

The satellite images are recorded in an arbitrary 
time sequence which is, however, common for all 
stations observing an event. The satellite images 
are then interpolated into the directions to the 
stars, i.e., into the background of stars, and thus 
fixed in the same reference system to which the 
star images have been reduced. The three-dimen­
sional position of the observing stations is found by 
assigning to them a location such that the satellite 
directions emanating from the various stations lead 
to the determination of the three-dimensional ge­
ometry of all observed satellite transits. 

Aside from the practical requirements of the 
field observer it is not necessary to know in 
advance the orbit of the satellite. The points of the 
orbit serve merely as elevated triangulation targets 
and only the condition for intersection of corre­
sponding rays is needed to fix the positions of the 
observation sites (cf. sec. 2.2). As a consequent 
requirement such rays must satisfy the "geometric 
condition of simultaneity" explained in sec. 2.4. 
This condition is automatically met, for example, 
in case the satellite trail is fixed by the recording 
of a sequence of flashes emitted by the satellite. 

Since a sufficient number of such flashes can 
not be generated to reduce the influence of 
scintillation adequately (cf. secc 2.5) we photo­
graph the satellite in the portion of its orbit 
illuminated by the sun. In this method the trace of 
the orbit is chopped by means of a rotating disk 
shutter in the camera (cf. sec. 2.6, figs. 22 and 23) 
into a series of time-dependent individual images. 
However for physical as well as technical reasons 
it is impossible to generate satellite images at the 

several observing stations that initially satisfy the 
"geometric condition of simultaneity." It therefore 
becomes necessary to fit the bundle of directions 
to the satellite for a particular event as closely as 
possible to the satellite orbit which is by its nature 
continuous. Since only a small portion of the orbit 
(about 1 or 2%) is involved, the observed curve 
may be considered as part of an elliptical orbit 
obeying the Keplerian laws of motion. These laws 
predicate that the satellite directions are referred 
to an inertial system as approximated, e.g., by the 
right ascension-declination system. 

On the other hand, because of the Earth's 
rotation, a solution based on satellite directions 
referred to an Earth-fixed coordinate system re­
quires the assumption of a twisted space curve as 
a model for the satellite orbit. 

In such a procedure satellite triangulation is 
subject to five sources of error. First are the 
uncertainties in the star catalogue data. Second 
are the accidental errors in time determination for 
the star and satellite exposures. Third are the 
accidental errors in coordinate measurement of the 
star and satellite images, fourth the influence of 
scintillation acting as an accidental error source 
and, finally, the irregular distortion of the photo­
graphic emulsion. All must be taken into consider­
ation. 

Such a presentation of the error budget assumes 
first that the corresponding systematic errors are 
sufficiently small and, secondly, that the mathe­
matical model used to reconstruct the photo­
graphic process is sufficiently close to reality. 
Furthermore the assumption must be valid that the 
photographed sections of the satellite orbit must 
be usable qualitatively for interpolation. All these 
assumptions must hold within such accuracy limits 
that the influence of the remaining imperfections 
on the triangulation computations remain a magni­
tude smaller then the propagation of the five cited 
error sources. 

All further secondary corrections such as pole 
displacement (cf. end sec. 2.4), astronomic and 
parallactic refraction, satellite phase angle and 
light travel time (For all these corrections see sec. 

· 2.5.) must correspond to geometric-physical reality 
with such accuracy that the effect of remaining 
biases is negligibly small. 

Even from this point of view the rigorous error 
theoretical treatment of the satellite triangulation 
method leads to a mutually correlated matrix 
schematic. The individual plates are uncorrelated 
with respect to the photogrammetric reduction so 
far as processing the measured star and satellite 
coordinates is concerned. However, for all plates 
introduced into a satellite triangulation system only 
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one set of reference stars is available, and these 
are limited in number and distribution. 

Hence the same group of stars appears repeat­
edly on the same plate as a result of star 
registration before, during, and after the event. In 
addition, such groups are recorded on a number of 
plates. 

In the observations for the world net, stars up to 
8th magnitude and with maximum mean position 
errors of 0':4 were selected from the SAO star 
catalogue. This gives us about 20,000 stars at our 
disposal ([3] of sec. 2). With an average frequency 
of about 100 stars per plate and approximately 
3,000 plates in the world net this means that each 
star appears, on the average, on 15 plates. Since, 
strictly speaking, there can result only one pair of 
corrections for each observed star in the adjust­
ment, the mathematical reconstructions of all the 
photogrammetric bundles and their orientations 
are correlated to such a degree that they should 
really be adjusted as a unit even if, for lack of 
knowledge of existing correlations, one accepts 
independent weight matrices for the star coordi­
nates. 

In the spatial triangulation of the observing 
stations the satellite directions are now combined 
to reconstruct the geometry of the recorded satel­
lite orbit curve. The intersection condition for the 
rays applied in this process-either direct or 
indirect by way of fitting to a spatial model of the 
orbit-contains additional orientation information, 
similar to the relative orientation in the classical 
photogrammetric restitution process. But since all 
photogrammetric bundle parameters that deter­
mine directions to the satellitt· and their orienta­
tion quantities are correlated, there results a 
correlation between all recorded satellite events; 
i.e., observing station positions and all observed 
satellite orbital curves should be obtained from 
one common adjustment with the use of the 
covariance matrix involving all reconstructed pho­
togrammetric ·bundles and their orientations. 

Processing the approximately 2,500 plates avail­
able in the world net requires the computation of 
nearly 50,000 interpolation parameters. For the 
approximately 1,400 recorded events, close to 
7,000 orbital parameters would have to be deter­
mined. A simultaneous adjustment of such a large 
number of correlated unknowns is at present, even 
with the largest available computer, neither eco­
nomically feasible nor, because of the required 
computational accuracy, capable of realization. 

One has, therefore, to make concessions. From 
the error theoretical point of view, probably the 
most serious compromise is the necessity of sepa­
rately determining the photogrammetric interpola-

tion parameters for each plate, since these param­
eters determine absolute directions to the interpo­
lated satellite images and are therefore of decisive 
significance in fixing the spatial positions of the 
observation stations. In conformance with the 
weights given with the star data, a pair of 
corrections for the star coordinates is obtained in 
each bundle reconstruction adjustment, independ­
ent of the number of images of the particular star. 
On completion of all the bundle reconstructions 
under consideration there will therefore be for 
each star as many corrections available as the 
number of times such a star was recorded on the 
various plates. On the basis of the observa~ion 
data in the world net this averages out to 15 times. 
Arguing from the concept that every adjustment 
represents a weighted arithmetic mean, there is a 
possibility of computing for each star a unique set 
of corrections in the form of the arithmetic mean 
of the individ~al pairs. Care need only be taken to 
insure, by use of appropriate weights, that the 
mean error of unit weight after adjustment is the 
same for all the bundle reconstructions. One could 
then add this average of the corrections to the 
original star data and repeat the bundle recon­
struction computations. With an appropriate 
choice of weights for these corrected star data the 
latter could then be held correspondingly fixed in 
the repeated bundle reconstruction. 

The justification for such an expensive iteration 
depends on how close the averaged star coordinate 
corrections come to the solution from a rigorous 
adjustment. The significance of such a solution 
hinges, therefore, on the extent to which these 
""improved star coordinates" represent in their 
totality a reference system which is superior to the 
star catalogue available originally. In the process­
ing of the world net the "improved star coordi­
nates" for the 20,000 stars being used are being 
computed in order to be able to present these 
amended right ascensions and declinations to the 
astronomers for critical evaluation.· Repetition of 
the computations for bundle reconstructions is, 
however, not contemplated for financial reasons. 

As mentioned previously the accidental errors of 
time designations for the star and satellite record­
ings must be taken into consideration. In the 
adjustment for the single camera this is taken care 
of automatically by carrying· corrections to the 
right asc.,nsions. These being geometrically equiv­
alent to UT-1 it is necessaty only to .compute 
weights for the introduced right ascension values, 
taking into a<;count the uncertainties in time 
associated with the recorded instants of observa­
tion. For the instrumentation used in the world net 
this accidental timing error amounts tb less than a 
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millisecond so far as the registration of the shutter 
action is concerned. Since the available UT-1 is in 
itself scarcely better than ±2 ms (which acts as a 
system error in the orientation for the individual 
plate) the assumption of a ±3 ms overall uncer­
tainty in the determination of time for the star 
exposures seems reasonable. The inaccuracy of a 
direction corresponding to this time uncertainty is 
±0':045, a magnitude considerably less than the 
photogrammetric measuring accuracy with the 
BC-4 system and the 450-mm lens, hence negligi­
ble. 

A similar conclusion can be drawn with respect 
to the influence of random errors of the synchro­
nization procedure on the satellite images. By 
means of periodic control of timing (cf. sec. 2.6.1) 
the instants of observation at the various stations 
are fixed relative to each other within at least 
± 100 JkS. The most critical situation would arise 
for the Echo satellite with a speed of 8 km/s and 
minimum distance of 1,000 km, where 100 JkS 
corresponds to a change in direction of ±0'~16. 
With the Pageos satellite used in the world net, 
because of its greater distance and consequent­
slower speed, a timing error of ±100 p.s results in a 
maximal direction uncertainty of only ±0'~04. Al­
though this is negligibly small, a calculation I em­
ployed in the adjustment discussed later on­
which is designed primarily to eliminate scintilla- ' 
tion with polynomial curve fitting-serves to adjust 
as well any existing random timing errors in the 
synchroniz-ation. 

Existing correlations between the separately re­
-constructed bundles of directions to stars are 
neglected, as detailed above. Thus, for each single 
camera computation individual parameters are de­
termined for the interpolation model including the 
covariance matrix associated with these parame­
ters. This is significant for further evaluations, 

The locations of the observing stations are 
computed in the step of the adjustment which now 
follows. Their position in space is fixed by the 

condition that the bundles of directions to the 
satellite issuing from these stations must lead to 
the geometry of all satellite orbital curves that 
have been recorded. Since each bundle of direc­
tions is obtained by the interpolation of the 
correspo.nding satellite images into the relevant 
interpolation model and, since these models are 
now no longer correlated, it follows that the 
individual satellite orbit determinations are like­
wise uncorrelated. This results in a simplification 
of the data processing as the orbit determinations 
can be processed sequentially and care need only 
be taken that their cumulative effect bears on the 
station determination. 

The condition of intersection on which the 
determination of the geometry of the observed 
satellite orbits is based-either directly or indi­
rectly by way of a fit to a spatial orbital model­
contains additional information for determining the 
parameters of the relevant interpolation models. 
The coordinates of the stations and the parameters 
specifying the geometry of the satellite orbit, plus 
all parameters of all interpolation models involved 
together with their individual variance-covariance 
matrices referred to above, must appear as un­
knowns in the adjustment. 

The resulting system of normal equations is 
Bv = ~ with a range in weights P from zero to 
infinity. Designating the vector of corrections to 
the measured satellite image coordinates by v, the 
correction vector for the previously computed 
bundle interpolation parameters 0 by v0 , the 
correction vector for the approximated satellite 
orbital positions by v,,, and finally the correction 
vector for the approximated station coordinates by 
v.r, the corresponding normal equations system can 
be written as indicated in figure 34. The X are 
supplementary conditions that may exist between 
the stations to be triangulated such as, for exam­
ple, measured distances for scale determination. 

Figure 35 shows the normal equations system 
after these functional relations have been intro-
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duced. The corresponding set of correlates are 
designated by K. The system reduced down to 
satellite orbit and station coordinates is given in 
the lower portion of figure 35. 

The image coordinates can be expressed as 
functions of the interpolation parameters describ­
ing the photogrammetric bundle of the coordinates 
of the satellite position and of the relevant coordi­
nates of the observing station. Since the individual 
bundle reconstructions are uncorreiated, it is pos­
sible to replace the correct

1
ion vec~or to the 

interpolation parameters by a corresponding cor­
rection vector to the image coordinates, thus 
reducing decisively the number of unknowns to be 
carried. 

As is apparent from the lower portion of figure 
35, this computation procedure is completely rigor­
ous only when the expression 4.0 is carried along 
on the right-hand side of the reduced normal 
equations system, i.e., with the vectOr of absolute 
terms; hence, _a rigorous elimination of the 0-
parameters is not possible. However, since in the 
first iteration loop the 0-values as obtained from 
the single camera adjustment .are introduced into 
the triangulation adjustment as approximation val­
ue~, 4 0 is initially a zero vector. This means that 
the elimination of the 0-parameters is valid to 
within the first order of 4 0 terms. Moreover, due 
to the large number of absolute control point• (in 

our case about 100 stars per plate), the influence 
of the orientation contribution resulting from the 
intersection condition is quite small. Thus the 
procedure is justified by the considerable gain in 
simplicity derived by the elimination of these 
parameters in the triangulation adjustment. 

This leaves the unknowns that are to be deter­
mined by the condition of intersection of the rays: 
the coordinates of the observing station and the 
parameters describing the geometry of the satellite 
orbital curves. From a. conceptual point of view 
this means that the bundles or' directions to a 
satellite assigned to a particular satellite pass must 
conform as closely as possible in the sense of an 
adjustment to the orbital curve. This curve is 
subject to the geometric consequences of Kepler's 
first law, according to which the orbit can be 
expressed. in an inertial system, by the equation 
of an ellipse. 

Furthermore, the fitting process must do justice 
to the dynamic content of Kepler's second law, 
according to which the true anomaly is a function 
of time. It seems convenient in the application to 
develop the true anomaly as a series in the 
eccentricity and the mean anomaly. Basically 
speaking one can say that Kepler's first law 
accomplishes the fit of the bundle perpendicular to 
the direction of the orbital curve and the second 
law along the orbit curve. Kepler's third law can 
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not be made use of because the orbital period of 
the observed satellite is not known. Moreover, the 
balloon satellite with its typically unfavorable mass 
ratio is exposed to disturbing influences such as 
residual atmospheric pressure and the Sun's radia­
tion pressure, so that the orbital period could yield 
only limited information in a geometrical sense. All 
computation schemes must furthermore take into 
account the fact that the recorded times for 
satellite imagery refer to the instants of exposure 
and these data must therefore be corrected for 
light travel time and Earth rotation during this light 
travel time before they can be further processed 
with the application of the principles of celestial 
mechanics. 

The practical application of orbital determina­
tion by means of bundle fitting is faced with two 
further obstacles. As stated at the end of sec. 2.5, 
a large number of satellite images is needed in the 
adjustment to sufficiently reduce the scintillation 
effect. In the world net the number of images 
averages 300 per plate. Since the corresponding 
300 directions are derived from the same group of 
interpolation parameters they are correlated, 
which means that for each of the satellite direction 
bundles to be introduced into the fit a 600 X 600 
completely filled covariance matrix must be taken 
into consideration. If the event has been observed 
by more than two stations this quickly leads to 
undesirably large demands on the memory of the 
computer. Even more decisive is the fact that the 
scintillation effect depends on the meteorological 
conditions during the event which can be quite 
different at the contributing stations. To prevent 
this "noise" from being averaged between the 
contributing stations to an event in the triangula­
tion adjustment, _the appropriate weight matrices 
for the individual direction bundles must be com­
puted, using the mean scintillation characteristic 
for each station. This quantity is not yet available. 

Alternatively to the bundle fitting concept one 
could also fix the satellite orbital curve by smooth­
ing the spatial coordinates of the triangulated 
satellite points with polynomials as functions of 
time [ll]. Such a solution assumes that the orbital 
curve is designated by a series of short duration 
flashes emitted from the satellite, the time se­
quence of the flashes being sufficiently well 
known. Ouly then will there be recorded images 
on the individual plates which lead to the triangu­
lation of the corresponding orbital points. On the 
other hand if, as is necessary for practical reasons 
at this time, the satellite images are produced on 
the various plates by chopping the trail of the 
continuously illuminated satellite with a rotating 
disk shutter into separate points, then one would 

first have to compute the necessary light travel 
times iteratively with approximated satellite posi­
tions. In principle this would give sufficient infor­
mation to interpolate on each photogram for the 
event image points satisfying the Hgeometric con­
dition of simultaneity." From an error theoretical 
standpoint, however, such interpolation is open to 
question for the very reason that the position of 
the individual images is influenced to different and 
unknown extent by scintillation. From the compu­
tational standpoint still another disadvantage ac­
crues to this solution in that all the satellite 
directions on the selected plates are correlated, 
leading to variance-covariance matrices whose 
consideration would require an intolerable amount 
of memory space. 

The theoretical and practical difficulties of the 
above method of solution are circumvented by 
modifying the approach and evaluating each plate 
independently to the greatest extent possible. 

This concept is valid also from the standpoint of 
error theory and is based on the fact that the 
measurements at a given observing station, i.e., 
the photogrammetric registration of the star im­
ages and satellite orbit together with the relevant 
recordings of time, are self-sufficient in the sense 
that the information so obtained is completely 
independent of similar operations at other stations. 
Transforming these measuring data into time­
correlated satellite directions. requires only the 
additional assumption that the satellite orbital 
curve is continuous. 

Knowing the geometric-dynamic properties of 
the photographed portion of the satellite orbit as 
described above, it should be possible to postulate 
the form of this trail on the photogram, in 
direction of the trail and at right angles to it, in 
terms of the central perspective laws, light propa­
gation time, and the aberration due to the Earth's 
rotation. The formalization would lead to an infi­
nite series expansion in which higher order terms 
could be neglected. An adjustment to this theoreti­
cal model of the orbital projection could then be 
made by fitting the satellite images to it. Another 
possibility and the one adopted here is to smooth 
the satellite images with polynomials. Just as the 
triangulated spatial coordinates of discrete orbital 
points can be fitted to polynomial functions of 
time, the recorded sequence of time-related satel­
lite images can be similarly smoothed, resulting in 
positions of the satellite on the photogram as a 
function of time. A curve fit i• justifiable all the 
more from the standpoint of error theory inasmuch 
as the simplest conceivable projection model e>..ists 
between the continuous orbit and the correspond­
ing satellite image sequence. The measured satel-
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Figure 36.-Schemati(: of the portion of the satellite orbit 
observed and the typical location of observing stations. 

lite image coordinates are therefore reduced to the 
concept of a rigorous central perspective (i.e., the 
concept of an ideal photograph) by means of the 
bundle reconstruction parameters obtained from 
an adjustment based on reference stars and their 
images. Then one applies the principle of an 
adjustment to compute best-fitting polynomials. To 
the extent that the central perspective nature of 
the images of the satellite orbital points has been 
reproduced, this adjustment has the function of 
neutralizing the random errors of the comparator 
measurements, random emulsion shrinkage, and 
scintillation effects. In addition, it yields an indica­
tion of the accuracy of the smoothing polynomials 
in the form of statistical functions. 

In order to verify the required degree for these 
polynomials, 380 satellite space coordinates were 
recorded for a simulated Pageos orbit at intervals 
of 0.8 s, corresponding to the average length of 
the Pageos arc observed with the BC-4 camera. 
The satellite orbit was integrated with a lOth-order 
Cowell-Stormer process. The Earth's gravity field 
was introduced by means of an expansion in 
spherical functions to the 4th degree and 4th order 
using the coefficients of the "1966. Smithsonian 
Institution Standard Earth." Radiation pressure of 
the Sun and attraction of the Moon and Sun were 
also included in the integration computations. The 
resulting coordinates of satellite positions were 
then transformed into a geostationary system. 

Six fictitious observing stations (see fig. 36) were 
distributed relative to the computed orbit, to simu­
late the geometrical distribution of stations. By 
applying the time of light propagation for each of 
the 380 fictitious points of the orbit, correspoitiling 
plate coordinates were computed at each of the six 

TABLE 3.--Curve fit of 380 fictitious satellite 
images with polynomials of degree 1 to 11; x in the 

· direction of the trail, y normal to it 

Degree of •x •y 
polynomial [1£m] [1£m] 

Obs. sta. 1 _____ _ I 404.166 215.720 
2 53.445 1.853 
3 1.267 0.289 
4 0.090 0.006 
5 0.003 0.001 
6 0.000 0.000 

Obs. sta. 2 _____ _ I 461.861 133.736 
2 54.919 0.964 
3 1.479 0.166 
4 0.099 0.004 
5 0.004 0.000 
6 0.000 0.000 

Obs. sta. 3 ------ I 226.233 169.385 
2 50.510 0.229 
3 0.709 0.204 
4 0.076 0.002 
5 0.002 0.000 
6 0.000 0.000 

Obs. sta. 4 ------ I 494.437 57.121 
2 53.362 0.209 
3 1.571 0.039 
4 0.099 0.000 
5 0.004 0.000 
6 0.000 0.000 

Obs. sta. 5 ------ I 356.618 82.163 
2 51.751 0.223 
3 1.116 0.077 
4 0.085 0.001 
5 0.003 0.000 
6 0.000 0.000 

Obs. sta. 6 _____ _ I 145.585 157.387 
2 48.951 0.476 
3 0.458 0.184 
4 0.070 0.000 
5 0.001 0.000 
6 0.000 0.000 

stations to reproduce an exact central perspective 
mapping of the orbital geometry. These plate 
coordinates were then subjected to polynomial 
curve fits from the first to the eleventh degree in 
sequence. The resulting mean errors of the com­
puted coordinates after adjustment are listed in 
table 3 below, u x referring to the coordinate 
component in direction of the trail and u u at right 
angles to the trail. 

For poly~omials of 7th to 11th degree all entries 
are the same as they are for the 6th degree. 

From table 3 it is seen that the required 
accuracy can be obtained with a polynomial of the 
5th degree along the trail and of the 4th degree 
across the trail.. At the same time no undesirable 
effect of "oversmoothing" is apparent with polyno­
mials of higher degree, at least up to the eleventh. 
This degree is of consequence in that from an 
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adjustment polynomial of the nth degree only 
(n+ l) computed values can be used, otherwise the 
corresponding covariance matrix becomes singular, 
while the use of fewer values does not exhaust the 
available information content completely. 

In processing the world net, polynomials of the 
6th degree are used in smoothing both x and y, so 
that seven fictitious directions can be used in the 
final triangulation, provided that the trace of the 
portion of the satellite orbit common with other 
stations extends over the whole plate. Thus the 
polynomials provide the adjusted location of the 
satellite trace as a function of the recorded time. 
This relation simplifies the application of the 
influence of time corrections such as clock differ­
ences and light propagation~ After having trans­
formed a selected satellite orbital time to a 
corresponding time of registration on the plate, it 
is necessary to compute only x and y coordinates 
for the corresponding fictitious plate image from 
the relevant polynomial with this latter time. By 
using this procedure on all photograms that have 
observed a common event, a fictitious image is 
obtained on each photogram satisfying the "geo­
metric condition of simultaneity" (cf. sec. 2.4). An 
approximate preliminary triangulation of the rele­
vant orbital points will be needed to determine the 
variable propagation time of light for each regis­
tered orbital image. It should be noted in this 
connection that an error of 3 km in the approxi­
mated distance will create an error of only 10 p.s 
in the time. Along with the coefficients of the 
curve fit polynomials one obtains the mean disper­
sion of the individual images and hence the 
variance-covariance of the polynomial parameters. 
Since the fictitious satellite image positions corre­
sponding to specified times are computed as 
functions of the polynomial parameters ( cf. (58) 
and (270)), the corresponding error propagation 
computation will produce their variance-covariance 
matrix. This matrix rigorously displays the correla­
tions among the individual satellite images result­
ing from the polynomial smoothing. If 7 such 
fictitious satellite images are used, as for example 
in the world net, a 14 x 14 covariance matrix for 
these points must also be computed. 

At this stage the following evaluation data are 
available for each satellite orbit observation at a 
station: 

a. The bundle parameters describing the inter­
polation model, including the exterior elements of 
orientation, and the associated 20 X 20 covariance 
matrix scaled to an a priori introduced error of 
unit weight. 

b. The 7 pairs of coordinates for the selected 
fictitious satellite images together with their 

14 X 14 covariance matrix, also referred to the 
error of unit weight mentioned in (a). 

The last processing step, computing the three­
dimensional geometry of the observing stations, 
amounts to determining the spatial directions cor­
responding to the fictitious satellite images in 
order to triangulate the satellite orbit points and all 
the observation sites by means of an adjustment, 
subject to the condition that the sum of squares of 
weighted corrections to the fictitious satellite im­
age coordinates be a minimum. The weight mat­
rices of the satellite direction bundles are com­
pounded at each station by the joint influence of 
the covariances of the relevant interpolation par­
ameters (cf. (a) above) and the covariances of the 
plate coordinates of the fictitious satellite images 
(cf. (b) above). 

Whenever additional a priori given information 
relative to the geometry of the observing sites, 
such as spatial distance between them (as for scale 
determination), position coupling between adjacent 
stations (eccentric reductions), or the like is used 
as input data, such data can be introduced into the 
adjustment without difficulty after having com­
puted the necessary functional weights, referred to 
the a priori selected error of unit weight. This is 
true also for the case where additional geometric 
data will become available through, for example, 
laser distance measurement between satellite and 
station. 

In the world net such scalars will be introduced 
in the form of measured distances of edges of the 
world net polygon primarily in the United States, 
Europe, Africa, and Australia, as shown in figure 
37. 

These basic ideas underlying the error budget of 
geometric satellite triangulation are presented here 
in explanation of the error theoretical considera­
tions that lead to the adjusiment algorithm de­
scribed in sec. 2. 7 .' Moreover, by pointing out 
computational possibilities differing from the pres­
,ent solution and leading eventually to completely 
rigorous adjustment and error propagation, it is 
hoped that impetus will be given to perfecting the 
method of geometric satellite triangulation. 

The next section reports some results on accura­
cies in the various evaluation phases obtained in 
the processing of the observed data for the world 
net. 

3.2 Analysis of the Essential Sources of Error and 
the Error Propagation into the Spatial 
Triangulation. 

In sec. 3.1 it was shown that the method of 
geometric satellite triangulation is subject to five 
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Figure 37.-Scalars connecting observing stations actually measured in the world net program. 

random error sources. The accidental errors from 
these sources arise in connection with: 

a. the comparator measurements of star and 
satellite images. 

b. the reference data from the star catalogues. 
c. the designated times of the star and satellite 

recordings. 
d. atmospheric scintillation affecting the direc­

tions to the recorded star and satellite orbit points, 
and 

e. accidental emulsion shifts generated in the 
process of developing the plate. 

This idealized situation will, however, exist only 
to the degree to which sufficient precautions are 
exercised to either model the following. systemati­
cal error sources or eliminate them by operational 
procedures during the field observations and in the 
data processing. 

a. Observation Phase 
(l) Elimination of possible static instability of 

the camera during the average half-hour 
period of observation. 

(2) Elimination of systematic errors in recording 
the instant of shutter operation which is 
needed to within a few ms of Universal Time 
and, relative to all involved cameras, to 
within l/10 ms. 

b. Measurement Phase 
(l) Strict adherence to the Abbe comparator 

principle. 
,(2) Correction for the lack of perpendicularity of 

the comparator axes. " 
(3) Accounting for at leas.t linear differences in 

the comparator scales. 
c. Adjustment phase 
(l) Determination of the elements of interior 

orientation existing in the operational _envi­
ronment. 

(2) Determination of the comparator constants 
outlined in b(2) and (3) above. 

(3) Modeling of astronomic and parallactic re­
fraction, the latter because of the finite 
distance of the satellite. 

(4) Modeling the phase angle of the satellite 
illumination as function of size and shape of 
the satellite, its reflective property, and the 
geometric positions of the sun, satellite and 
observing station during the event. 

(5) Considering influence of light travel time on 
stations synchronization and aberration. 

(6) Introducing with sufficient accuracy the spa­
tial orientation of the instantaneous rotation 
axis of the Earth (pole wandering) with 
respect to individual camera orientations as 
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Figure 38.-Comparison of the measuring accuracies attained by a group of comparator operators and the individual 
performance of one. 

well as with respect to the use of UT-1 (true 
angle of Earth's rotation). 

(7) Reduction. of star places to time .of observa­
tiori, involving precession, nutation, proper 
motion, radial velocity, annual and diurnal 
aberration, as well as the influence of the 
spectral characteristics and magnitude of the 
star on the photogrammetric imagery. 

Quantitative results will now be given with 
respect to the above mentioned random errors and 
their propagation into the end results of the spatial 
satellite triangulation, errors in time determina­
tion, as previously mentioned, being considered 
negligible [1], [2], [3], [ 4], [5]. 

3.2.1 Accuracy of the Comparator Measurements 

We discuss first of all the result of measuring 
1,210 photogiams, representing practically half of 
the observed data from the world net. 

On each photogram, on the average, 100 fixed 
stars were recorded before and after the satellite 
transit and also during the event. With repeated 
exposure 500 to 800 star images are thus regis­
tered. In addition there are about 300 satellite 
images so that on each photogram at least 800 
images must be measured. In order to ~omplete 
these IT'easurements in the time alloted to the 
world net program, six comparators t,f similar 

design were in operation. Of significance also is 
the fact that a group of operators is involved in the 
measurements. Each photogram is measured on 
the comparator in two positions differing by ap­
proximately 180' (cf. sec. 2.6.5). By means of a 
two-component translation, two scale factors and a 
rotation, the two sets of measurements are brought 
into coincidence by an adjustment. The internal 
accuracy of the measuring process (precision of 
the comparator measurements) can then be judged 
on the basis of residual differences from double 
measurements. From the selected photograms with 
their 1,291, 744 double measurements there re­
sulted a mean error for the arithmetic mean of a 
double measurement of ±1.63 p.m. No significant 
difference between the precision of the x and y 
coordinates was detected. 

It is of interest to group the measurement of 
plates by individual operators. The separately 
computed average measuring accuracy for each of 
the 34 comparator operators, arranged in sequence 
of increasing absolute amounts, is shown in figure 
38. The number at the top of each arrow repre­
sents the nuJllber of ph<ltograms measured· by the 
ope! tor,_ and the ordinates of the arrow heads 
indi...:ate the range over which the mean errors of 
th~ individual plate measurements vary for that 
operator. 
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Figure 39.-Histogram of 1;291,744 double measurement differences. 

It can be seen that the mean measuring preci­
sion attained ranges from ±Ll J.Lm (for operator 
no. 38) to ±2.2 J.tm (for operator no. 4). The best 
single result was ±0. 76 J.tm by operator no. 38 and 
the worst was ±2.66 JLm by operator no. 20. As an 
explanation of these fairly surprising differences 
one must assume chiefly the varying capabilities of 
the operators but also the influence of environmen­
tal conditions on image quality. The lower diagram 
in figure 38 shows the mean error of the 78 
photograms measured in chronological order by 
operator no. 6 over a period of 18 months. 
Although the average mean error of ±l.37J.tm by 
this Operator is relatively low, the dispersion is 
typical for the behavior of all operators with 
respect to the quality of their individual measuring 
results. In addition to displaying the variation in 
precision from plate to plate the diagram indicates 
a steady though small improvement in the measur­
ing operation. 

Figure 39 shows the histogram of the 1,291, 744 
double measurements. From the similarity of the 
histogram with the superimposed ther_,retical uor·· 
mal distribution one can conclude a sufficiently 
close absence of b1as errors, all the more so taking 

into consideration the fact that the data for the 
histogram are composed of samples with differing 
mean errors. On the basis of these results one can 
well imagine that these measurements were all 
made by one fictitious operator on one fictitious 
comparator instead of by 34 operators on 6 com­
parators. Hence for the further error theoretical 
studies we shall assume that the internal accuracy 
of image coordinates, meaned from double meas­
urement, is sufficiently well expressed in their 
totality by a mean error of ± 1.63 J.tm. 

The mean errors m1 computed separately for 
each photogram are plotted in figure 40 for 500 
photograms selected for further study. The ob­
served data selected are derived from 35 stations 
of the world net plotted according to latitude. 
Table 4 shows the number of plates for each 
station. The location of the stations is shown in 
figures 47 to 52. See also table 1 in sec. 1.2. 

3.2.2. Accuracy of the Reconstructions of the 
Photogrammetric Bundles and Their Orientation~. 

The paramf'ter~ for reconstructing the bundle 
and· ~ts: orientation are obtained by relating the 
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Figure 40.-500 photograms, arranged according to increasing latitude of observing station, showing, in the top diagram, the amount 
of scintillation for each plate and, below, the mean errors of the bundle simulation and the comparator measurements, 
respectively. 

measured star image coordinates to the corre- TABLE 4.-Identification of the 500-plate sample 
sponding star catalogue data with an adjustment to used in figure 40 
a mathematical model. The total of these quan-

· tities, previously designated as interpolation par-
Seq. 

Obs. No. of 
Seq. Obs. No. of 

ameters, includes in addition to the purely photo- sta. processed sta. processed 
grammetric parameters a second scale factor and no. plates no. 

plates no. no. 

an angle to correct for the a priori assumed 
I 2 I 19 44 2 perpendicularity of the comparator spindles. The 2 3 I 20 45 7 

introduction of these extra parameters is justified 3 7 3 21 50 17 
insofar as one may assume that the homogeneity of 4 8 17 22 51 29 
the scale of the astronomic reference system (unit 5 9 17 23 52 20 

sphere) and the orthogonality of its coordinates are 6 II 10 24 53 24 
7 12 14 25 55 32 

superior, with respect to systematic errors, to the 8 15 3 26 59 15 
corresponding mechanical components of the com- 9 16 4 27 60 10 
parators. After the linear scale difference between 10 19 39 28 61 33 
the x and y spindles7 , and the deviation from II 20 I 29 63 25 

12 22 5 30 64 29 perpendicularity has been determined in this man- 13 23 2 31" 67 25 
ner, the mean error of ±1.63 p.m computed as a 14 31 16 32 68 29 
measure of precision for the image r'lordinates can 15 38 10 33 69 17 
he considered a measure of accuracy for the 16 39 2 34 73 2 
subsequent t .. eatment. Assuming a mean error of 17 42 14 35 75 2 

18 43 23 
±0':3 for the astronomic coordinates a, 8 of FK-4 Sum: 500 
stars reduced to tl,~ observation datum, and ±0'!4 
·for all 'lther stars, and that th·; mathematical 
model for simulation of the bundle is sufficient, 

then, since time errors are negligible. the mean 
-
7 Periodic screw errors are independently tested ----cor--in error of coordinate corrections resulting from an 

comparator calibrations. adjustment executed with appropriate weights will 
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Figure 41.-Histograms of x andy plate residuals for 25 typical single camera adjustments. 

express the additive influence of the random errors 
produced by the comparator measurement, scintil­
lation, and emulsion shift. Figure 40 lists the 
values for mP and m1 and the rms for all the data· 
for the 500 selected photograms. The tP • is the 
mean error of the image coordinates for the 
photogram as obtained from the adjustment for the 
photogrammetric bundle reconstruction, and m1 
the expression for the accuracy of the correspond­
ing comparator measurements. A mean error of 
± 1.0 p,m is assumed for the influence of random 
emulsion shift [7]. Hence the contribution to the 
total mean error mP by the scintillation is 

m, = ± (m~ - mf- l.O')i. (307) 

This error component is also listed in figure 40. 
The rms values for the 500 plates are 

mp = ± 3.31 p.m, m1 =: ± l.8lp,m, and 

m, = ±2.58 p,m 

Figure 41 shows the histogram of combined x 
and y coordinate corrections with corresponding 
normal distribution curves for 25 single camera 
adjustments. These were selected to cover uni­
formly the range of mean coordinate errors after 
adjustment actually obtained, i.e., from ± 1.88 JLm 
to ±6.87 p,m. The histograms illustrate the typical 
behavior of the totality of evaluated observed data. 

3.2.3 Accuracy of the Trace of the Satellite Orbit 
After the Polynomial Fit. 

The mean deviation of a measured satellite point 
from the smoothing polynomial of degree 6 varies 
between ±1.6 JLm and ±8.6p,m with rms of ±3. 75 
JLm for the fit in direction of the satellite trail and 
between ± 1.3 p,m and ±9.3 p,m with rms of ±3.28 



74 Three-Dimensional Triangulation With Satellites 

,. 
00 

• 

• 
' 
·~~~~~~~~~~ 
' $4 4ll ' .. • lll .r 11 1M ~'f-f,..J'" JOIIO ,. • • -Q 44 • 

0 ~~~~~--~:--·~·~·~"~o~d~,.~~ .. ~·~,,~.,~·~~~,.~·~~~~,~·~·~u~hv~~~·~-"--~----~--~ 
8Q 5t Ill 

"' - .• - - - - - - -NUMBER OF PHOTOGRAIIIIS , . .. 
• 

' 
' 

.. ·+----.---.---,,---.---~--~--~r-r-c---~~ - - - - - - - -NUIIIBER OF PHOTOGRANS 

Figure 42.-Plot of the mean errors of the individual polynomial fits to the satellite trail for each of the 500 plates of figure 40. The 
top diagram refers to the polynomials fitted to displacements in the direction of the trail and the bottom one to the fits 
perpendicular to the 'trail. 

J-tm perpendicular to the trail (cf. fig. 42). The 
corresponding x, y mean value is ±3.52 J.tffi. 

The individual mean displacement is a measure 
of how well the satellite images on a given 
photogram fit the polynomial. These quantities are 
the sums of the superimposed random errors of 
the comparator measurements, the emulsion 
shifts, and again the scintillation. The mean 
deviation in the direction of the satellite trail is, on 
the average, 0.47 J-tm larger than at right angles to 
the trail. This is not so much due to random time 
errors of the recording sequence that operate in 
the direction of the trail as it is to the fact that the 
comparator measurements of the trail images have 
a larger mean error in this direction than in the 
direction perpendicular to the trail, because of 
image blur from the satellite motion. 

About 300 satellite image measurements are 
available per plate. From the double meastlre­
ments and their differenc'es, ·the accuracy of the 
comparator measurements is again determined. 
This is on the average ± l. 79 J-tm for the x and y 
measurements, or practically the same value as for 
the star image measurements. Again, with the 
assumption of ± 1.0 J.Lm for the mean random 
e-mulsion shift, the opportunity is given to isolate 
the scintillation effect as 

m, = [3.522 
- l. 792 - 1.02]1 = ±2.86 J-tm 

(308) 

The treatment of the scintillation as a random 
source of error is based on the fact known from 
astronomical observations [8], that the mean am­
plitude of scintillation operates as an irregular 
error source in all directions. Computing for each 
plate the scintillation effect on the star images in 
accordance with (307) and comparing these values 
with the corresponding similar values obtained 
from the curve fit with (308), the correlation 
coefficient p = 0.81 ±0.02 is obtained with the 
formula 

n=SOO 

I As,· As, 
1=1. 

p .= -[ -.~-1,-,-, _:.A:.s~!]~1-.,[ -.~-1,-,-, -A-s-.,~J,-1 
i=l i=l 

(309) 

where the .6. 's represent deviations of the individ­
ual amounts of scintillation from their mean value 
and the indices l and 2 refer respectively to the 
scintillation computed from the bundle reconstruc­
tions and from the polynomial fit. 

Figure 43 shows the mean scintillation at each 
observing station with the stations arranged by 
latitude. From this it is seen that scintillation, with 
an· overall ~ean for all stations of ±2.58 J-tm for 
the star images and ±2.86 JLm for satellite images, 
represents a considerable error contribution to the 
total error budget. Also apparent is the increase in 
scintillation with increasing latitude which is to be 
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Figure 43.-Average scintillation at a number of observing stations arranged according to latitude, showing a corresponding trend 
curve. 

expected in consequence of the theory presented 
by N ettelblad [9], according to which scintillation 
is least in warm, maritime air masses and greatest 
in cold, continental climates. The amplitude of the 
scintillation depends, in addition, on the exposure 
time, which may be the cause for the fact that the 
mean scintillation for the star exposures of be­
tween 0.2 and 3.2 s is ±2.58 tJ-m and for the 
satellite images exposed from l/15 to l/30 s is 
±2.86 tJ-m. 

Obviously the use of short-duration flashes (1/ 
1,000 s) will increase the scintillation effect for the 
individual. flash, thus making it all the more 
desirable to have a considerable number of such 
flashes before an accurate triangulation can be 
performed. 

3.2.4 Error Propagation into the Spatial Triangula­
tion 

In sec. 3.2.1, 2, 3 quantitative results have been 
given for the significant random error contributions 
that must be considered in setting ·up an error 
budget for spatial triangulation. Table 5 presents 
average values from the processing of the selected 
500 photograms. · 

The figure in column 7 of table 5 indicates that 
an average uncertainty of 1'!57 in direction should 
be associated with a bundle reconstruction that is 
not overdetermined. Actually this value is a func­
tion of the position of a ray within this bundle [3] 
and to be completely rigorous, in accordance with 
error theory, should be computed with the covari­
ance ffifltrix obtained from the inc..iividu~ bundle 
reconstruction adjustment. Since :he bundles un­
der consideration here are relatively narrow how­
ever (the at.gle of vision for the BL.-4 camera is 

about 20°) we can, for the present, ignore this fact . 
in a general examination of the error propagation. 
In orde; to determine uniquely the 20 required 
interpolation parameters of an oriented bundle 
reconstruction, at least 10 reference stars are 
required, so that the use of an average of 100 stars 
per plate represents 10 solutions in the adjust­
ment. Each star being measured five times on the 
average, if can be expected that the. direction 
uncertainty for a central ray after adjustment of 
the bundle reconstruction will, from a combination 
of tabulated values in table 5, be as·follows: 

The error sources affecting the individual image 
coordinates add quadratically to 

(m1) = ±(1.81' + 1.02 + 2.582)1 = ±3.31 tJ-rn 

(310) 
(cf. table 5, cols. 2, 3, 4, and 5). Assuming the five 
images for each reference star combined into one 
fictitious image, then the coordinates will have an 
accuracy of 3.31h/5 = ±1.48 tJ-m. Combined with 
the mean star catalogue uncertainty of 
±0':4 = ±0.87 tJ-m (col. 6) we have a mean 
uncertainty in direction of ±1.72 J.Lm = ±0':79. 
The combination of 10 independent solutions in 
one adjustment reduces this error to approximately 
0':79/y10 = 0':25. 

The figures of table 6 are results from a bundle 
reconstruction adjustment with a mean error of 
±3.31 tJ-m for the image coordinates after adjust­
ment involving 648 star images of 105 reference 
stars distributed approximately evenly over the 
plate. The results shown are mean accuracies of 
direction~ corresponding to various image position::; 
on the plate &ssumed free of,error [3]. 

The mean error ±0':23 from this table for the 
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Photogrammetric camera: 

TABLE 5.--Statistics for .the 500-plate sample 

Wild BC-4, Lens: Cosmotar f = 450 mm, aperture 132 mm 
Target; 
Program: 

PAGEOS balloon satellite for 496 photograms and ECHO satellite for 4 photograms 
World Net 

Period of observation: October 1966--September 1969 
Observation material: 500 selected photograms with corresponding time recordings from 35 stations in the World Net 

An•rage 
valuf'tl 

b 

:\linimal 
value.< d 

:\faximal ' 
values 

"' Type nf 
imager)· 

Stan~ 

Satellite· 

Sian 

Satellito:o 

Still'~< 

Satellite 

l2l 
:\lt>an t>rrurs 

nf o:omparatnr 
mt'asuremenls 

m,(p.ml 

±l.Bl 

±1,79 

±0.97 

±0.87 

±2.45 

:!:2.68 

'" "' A"'~umtd mean A\·erage 
of irregular of mean 

emulsion shift scintillation 

"'m' "'m) (1 

±1.00 ±2.58 :!:1.18 

±1.00 ±2.86 ±1.31 

±1.00 ±1.01 ±0.46 

±1.00 ±1.07 ±0.47 

±1.00 ±6.46 ±2,96 

±1.00 ±6.84 ±3.14 

(5} '" '" '" Mean coordinate Introduced Total noise in Mesn error 
error after mean error of photogra:mmetric of polynomial 

adjustmenl in reduced star bundle simulation smoothing 
photogrammetric catalog data adjustment [(2J' + (3)' + (4)1]1 
bundle simulation [(2)2 + (3)2 + (4)1 + (6)1]1 
[{2)1 + (3)1 + (4)1]1 

(m1)~ml (l(.m) n (p.m) n (l(.m) (1 

±3.31 ±0.87 ±0.40 ±3.42 ±1.57 

±3.52 ±1.61 

±1.88 ±0.87 ±0.40 ±1.93 ±0.88 

±1.46 ±0.67 

±6.87 ±0.87 ±0.40 ±7.03 ±3.22 

±8.96 ±4.11 

TABLE 6.-Mean direction accuracies corresponding to image positions on a typical single plate 

Image coordinates (x in mm/y in mm) 0/0 10/10 

Mean accuracy of direction ±0:23 

central ray (x = y = 0) is in good agreement with 
the value 0'!25 obtained before from general con­
siderations. Using the mean satellite image error 
figure of 1'!61 from table 5, col. 8, the 6th-degree 
polynomial fit over 300 satellite points will contrib­
ute an uncertainty in direction after adjustment of 
± 1'!611\/300/7 = 0'!25. The error sources being 
uncorrelated the total expected error in direction 
for the central ray is (0'!25' + 0'!25')1 = ±0'!35. 

The use of 6th-degree polynomials makes seven 
directions available for satellite triangulation in 
each photographed bundle. However, as we know, 
these are mutually correlated. One reason is that 
they are all obtained with a specific group of 
interpolation parameters from one single camera 
and, for another, they all derive from a single pair 
of smoothing polynomials. From a siudy of the 
relevant covariance matrices in a rigorous adjust­
ment whose reproduction here would far exCeed 
the available space, it becomes apparent that the 
use of seven directions distributed evenly. over the 
satellite trail yields a gain of 32% for the geometry 
of the bundles as against the use Df a sing!" 
central direction. This means that the use of all 
seven directions has about th..: same Information 
content that would h"e obtained from two central 
rays that are not correlated. 

Hence, if we conceive of the total information 

20/20 30/30 40140 50/50 60160 70/70 

±0"19 

used in the evaluation of a specific photogram as 
compressed to determine a central fictitious direc­
tion we may expect for such a direction an 
accuracy of m, = ±0'!35 - 32%( ±0'!35) = 0'!24. 

According to sec. 3.1 the adjustment algorithm 
is based on the assumption that the results of 
bundle reconstructions at the individual stations 
are uncorrelated. Consequently the directions to 
the satellite for a given event derived at the 
individual stations are likewise uncorrelated~ To 
obtain a measure of the mean accuracy to be 
expected for the spatial triangulation of the observ­
ing sites one can therefore assume that the mean 
accuracy 0':24 of a direction computed above for a 
fictitious central direction containing all the infor­
mation content is an uncorrelated function of the 
station. In the adjustment algorithm this accuracy 
of triangulation directions associated with a spe­
cific evaluation of a photogram is expressed in the 
form of the weight matrix associated with the 
coordinates of the seven fictitious satellite images, 
the weight matrix being computed from the corre­
sponding covariance .matrix derived with (277) of 
sec. 2.7. In sec. 3.1 it was mentioned that in the 
mathematical formulation to he set ur f·>r the final 
triangulation, only the satellite and station posi­
tions were to· be determined as unknowns. From 
the basic triangulat~ lfi geometry shown in figure 3 
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z 

Sole11ite 

Average Direction 
Accuracy £ 0."17 

Figure 44.-Section of error ellipsoid at observation station 
intersected from two satellite positions. 

it is then obvious that the accuracy of the 
triangullltion results to be expected in a direction 
perpendicular to the direction station-satellite is 
proportional both to the directional accuracy and 
the station-to-satellite distance. This is indicated 
schematically and reduced to two dimensions in 
figure 44. 

The accuracy-Til .direction of the z coordinate is 
a function of the angle 'Y in which the station­
satellite planes intersect. From analysis of the 
inverted normal equations systems, which contain 
the geometry of the actual satellite observations it 
follows, quite generally, that the mean error of the 
triangulated station in direction of the geodetic 
latitude and longitude, assuming errorless scale, is 
proportional to the prodnct mR ·d, where mR is the 
mean accuracy of direction and d the mean 
station-to-satellite distance; on the other hand, the 
average mean error in the direction of height is 

10 

''i .. ' 
0.1 0 

three times as large [5]. These relations are shown 
in figure 45, in which y'Q is the error propagation 
factor (sometimes called the weight reciprocal) for 
the position coordinate. 

The same result is shown schematically in 
another Jorm in figure 46. From this, by compari­
son of antipodal stations, it is apparent that the 
uncertainty in height determination within a world 
triangulation eventually has the effect of an uncer­
tainty in scale. One can expect therefore that 
additional scale control will have particularly fa­
vorable influence on the accuracy of height coordi­
nates but will represent no real gain for the 
determination of the position coordinates <p, A. 
This fact is illustrated in figure 46 showing the 
effect of from l to 4 scale determinations. The 
lower part of figure 45 shows that even under the 
assumption of errorless scalars (weight 104) only 
the stations directly involved in the scale determi­
~ations show a gain in the determination of their 
latitude <p and longitude A. On the other hand, the 
error propagation coefficient for the height deter­
mination reduces from 3 to 1.8 with the use of four 
scalars, even when a more realistic weight of 1 is 
used in the scale determination [5], [10]. 

In the world net the Pageos satellite was 
observed almost exclusively. Its normal circular 
orbit elevated about 4,600 km above the surface of 
the Earth resulted in an average station-to-satellite 
distance of 6,000 km. With a mean direction 
accuracy of 0'!24 and the propagation factors of 
figure 45 a triangulation solntion based on two 

......... w, 
o, 1.0 

D, 0 0 1.0 

o, 0. o, 1.0 

0, o,o,o., 1.0 

Figure 45.-Error propagation factors for ellipsoid hei~ht, latitude, and lon~itude using from one to four scalars. 
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RIGHT ASC:t:MSIOM-DECLINATION llEFEitENCE SYSTEM 

Figure 46.-Error propagation of the method of geometric. 
satellite triangulation. 

satellite transitS or events per triangle side, assum­
ing an errorless scale, produces position coordi­
nates for the observing stations with mean errors 
m• = m, = ±7.0 m and mn = ±21.0 m. At this 
time 2,350 plates have been reduced for evaluation 
in the world net. The distribution of the corre­
sponding events is shown in figures 4 7 to 52. 
These observations correspond to about five inde­
pendent solutions. An adjustment of all these 
events should therefore yield an accuracy of 
m• = m, = ±7.0h/5 = ±3.1 m and mn = ±21.0/ 
y5 = ±9.4 m. Introducing the planned four sca­
lars, measured independently and with an ac­
curacy of at least 1:1,000,000, the expected 
mean error in height reduces to mn = ±3.lm 
X 1.8 = ±5.6 m (cf. fig. 45) and the mean position 
error of a station 

( 
m2 + m2 + m2 ) I 

M = ± • 
3
' H = ±4.1 m (311) 

or M is roughly 1:1,500,000 of the mean station-to­
satellite distance. 

In the next paragraphs the result of the world­
wide geometric satellite triangulation program is 
presented with an associated error analysis based 
on the statistical information obtained during the 
final triangulation adjustment. 

3.3 Result of the World;dde Geometric Satellite 
Triangulation 

The quantitative result of the worldwide geomet­
ric satellite triangulation program consists of the 

Figure 47.-Geographic distribution of stations and 
observations. Center of view: latitude 0°, longitude 90°[. 

Figure 48.-Geographic distribution of stations and 
observations. Center of view: latitude 0°, longitude 0°. 

three-dimensional positiOns of 45 stations. Their 
locations can be seen from figure 53 and table 1. 

The corresponding Cartesian reference coordi­
nate system has, as explained before, one of its 
axes parallel to the rotation axis of the Earth for a 
certain epoch (CIO). The origin of the system and 
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Figure 49.-Geographic distribution of stations and 
observations. Center of view: latitude 0°, longitude 180°. 

Figure 50.-Geographic distribution of stations and 
observations. Center of view: latitude 0°, longitude 90°W. 

the selection of the X direction is arbitrary for 
reasons inherent to the method of geometric 
satellite triangulation. It was fixed by enforcing for 
station No. 2, Beltsville, Md., U.S.A., the follow­
i~g coordinates, which are approximations for a 
~ass-centered position. 

Figure 51.-Geographic distribution of stations and 
observations. Center of view: North Pole. 

Figure 52.-Geographic distribution of stations and 
observations. Center of view: South Pole. 

Spatial coordi-
nates 

X y z 
Station (m) (m) (m) 

No.2 1130761.500 4830828.S97 3994704.584 
. (Beltsville) 



Figure 53.-The 45 stations of the worldwide BC-4 photogrammetric satellite triangulation network with station number designations. 
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As discussed in the analysis of the results in the 
next paragraph, it was decided to enforce all eight 
scalars with their l)leasured values. 

3.4 Analysis of the Triangulation Adjustment 

Table 7 lists the three-dimensional Cartesian 
coordinates• for the 45 stations and their mean 
errors (one sigma level) as obtained from the final 
adjustment. The coordinates refer to the projective 
center of the BC-4 cameras. The elevation of this 
point above the permanent station mark is in each 
case + 1.5 m. ~ 

The input of the triangulation adjustment refers 
to the information obtained from the evaluation of 
2,350 photographic plates. Specifically, the obser­
vation from 856 two-station, 194' three-station, a~d 
14 four-station satellite events were used. The 
1,064 satellite events chosen for evaluation re­
quired the determination of the spatial positions of 
the tracking stations and the triangulation of 6,604 

TABLE 7.-Adjusted Cartesian coordinates of world net stations 

X cr, y cr, z cr, 
No. Station name (m) :!: (m) (m) ±~(m) (m) ± (m) 

I Thule ------------------------------ 546567.862 2.297 1389990.609 3.447 6180239.602 3.960 
2 Beltsville ---------------------------- 1130761.500 0 4830828.597 0 3994704.584 0 
3 ~oses Lake -------------------------- -2127833.613 .790 3785861.054 2.976 4656034.740 2.906 
4 Shemya ---------------------------- -3851782.861 4.888 -396404.016 5.654 5051347.586 6.673 
6 Tromso ------------------------------ 2102925.118 3.663 ' -721667.562 4.772 5958188.868 4.748 
7 Azores ------------------------------ 4433636.070 4.737 2268143.467 4.362 3971656.223 4.945 
8 Surinam ---------------------------- 3623227.823 4.563 5214231.698 . 4.502 6015~~.302 5.716 
9 Quito ------------------------------ 1280815.597 4.338 6250955.436 5.800 -10793.013 5.71'1 

11 Maui -------------------------------- -5466020.732 5.045 2404435.198 4.352 2242229.885 4.703 
12 Wake ------------------------------ -5858543.398 5.308 -1394489.166 5.281 2093807.584 5.391 
13 ICanoya ------------------------------ -3565865.509 5.200 -4120692.866 6.694 3303428.249 6.131 
15 Mashhad ---------------------------- 2604346.389 3.988 -4444141.147 5.513 3750323.381 4.974 
16 Catania -----------------------------"" 4896383.234 4.080 -1316167.822 4.463 3856673.791 4.698 
19 Dolores ------------------------------ 2280603.832 4.190 4914545.588 4.789 -3355412.286 6.839 
20 Easter ------------------------------ -1888616.886 4.845 5354892.780 6.246 -2895739.444 7.217 
22 Pago Pago -------------------------- -6099954.446 5.392 997367.321 4.710 -1568567.088 5.883 
23 Thursday Is. ------------------------ -4955371.694 4.671 -3842221.799 5.689 -1163828.451 5.852 
31 Invercargill -------------------------- -43138!5.856 4.687 -891322.098 5.238 -4597238.676 6.398 
32 Perth ------------------------------ -2375397.874 4.579 -4875524.035 5.746 -3345372.936 6.170 
38 Revilla ------------------------------ -2160983.561 2.008 5642711.612 3.653 2035371.417 4.062 
39 Pitcairn ---------------------------- -3724766.403 6.502 4421236.249 6.480 -2686072.609 7.288 
40 Cocos ------------------------------ -74!969.205 4.859 -6190770.789 6.606 -1338530.638 5.843 
42 Addis Ababa ------------------------ 4900734.926 4.844 -3968226.427 5.481 966347.675 5.!03 
43 Sombrero ---------------------------- 1371358.188 4.171 3614760.271 4.969 -5055928.396 8.!56 
44 Heard ------------------------------ 1098896.432 6.448 -3684591.597 7.801 -507!838.356 9.919 
45 Mauritius ---------------------------- 3223422.870 4.472 -5045312.452 6.019 -2191780.736 6.065 
47 Zamboanga -------------------------- -3361946.845 4.909 -5365778.338 6.501 763644.128 6.!21 
50 Palmer ------------------------------ 1192659.730 5.174 2450995.36! 7.275 -5747040.896 10.171 
51 Mawson ---------------------------- 1111335.585 5.189 -2169243.189 5.456 -5874307.692 8.002 
52 Wilkes ------------------------------ -902598.435 4.912 -2409507.607 5.700 -58!6527.805 7.901 
53 McMurdo ---------------------------- -1310841.759 4.993 -311248.105 5.500 -62!3251.231 7.886 
55 Ascension -------------------------- 6118325.238 5.260 1571746.070 4.816 -878595.457 5.507 
59 Christmas -------------------------- -5885331.078 5.213 2448376.867 4.435 22!683.837 5.446 
60 Culgoora ---------------------------- -4751637.577 4.552 -2792039.266 5.653 -3200142.319 5.866 
61 So. Georgia -------------------------- 2999903.036 4.896 2219368.228 6.055 -5!55246.454 8.547 
63 Dakar ------------------------------ 5884457.561 4.898 1853492.773 4.257 16!2863.206 5.072 
64 Chad -------------------------------- 6023375.533 4.690 -1617924.383 4.242 133!742.422 4.834 
65 Hohenpeissenberg -------------------- 4213552.554 3.730 -820823.968 4.444 4702787.513 4.620 
67 Natal --------------------------------- 5186398.560 5.260 3653936.203 4.854 -654277.651 5.569 
68 Johannesburg ------------------------ 50848!2.984 5.229 -2670319.559 5.065 -2768063.639 6.586 
69 De Cunha -------------------------- 4978412.958 8.167 !086867.619 6.918 -3823159.761 9.443 
72 Thailand ---------------------------- -941692.348 5.593 -5967416.884 6.919 2039317.530 5.461 
73 Chagos ------------------------------ 1905130.320 4.345 -6032252.624 6.702 -810711.562 5.751 
75 Mahe ------------------------------ 3602810.169 4.910 -52382!i.287 6.393 -515928.653 5.650 

Ill Wrightwood -------------------~------ -2448854.721 2.088 4667988.213 3.367 3582758.969 3.!85 

8 The XYZ system is a left-handed system (we3t lvngitude positive). The cu·nplete co\'ariance matrix fur the triangulated station 
coordinatPs. which for space reasons can not be presented here. is available. 
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satellite positions. The adjustment provided for 
9,162 degrees of freedom. Two station-to-station 
couplings were introduced as additional constraints 
in order to tie together the stations 111-134 
(California) and 012-D66 (Wake Island) where, for 
technical reasons, satellite observations were col­
lected from neighboring observation piers. Eight 
scalars were rigorously introduced, representing 
the spatial distances between the following sta­
tions: 

Stations between which 
Spatial distances u, 

scalars were measured 
(m) (m) 

002-003 3,485,363.232 ±3.53 
00~111 1,425,876.452 ±1.59 
006-%5 2,457,765.810 ±0.80 
06:Hll6 1,194, 793.601 ±1.43 
OOIHJ16' 3,545,871.454 ±1.64 
02~ 2,300,209.803 ±0.88 
032-'060 3,163,623.866 ±0.98 
0~ 3,485,550. 755 ±2.10 

*The scalar 006--016 is not a truly independent scalar. 

The measuring and computation of these scalars 
was executed by various national agencies. For 
references, the following information is given: 

Scalar Measured by Computed by 

corrections [pvv]= (3.064 ±0.045) X IOc-8(m'). 
A comparison of the measured baselines with 

the corresponding triangulation results provides a 
first insight into the internal accuracy of the 
geometric world net. The differences between the 
computed and measured distances with a complete 
constraint on scalar 002-D03 . are shown in table 
8. 

TABLE B.-Comparison of measured baselines with 
the geometric triangulation result 

Scalar 
Ad~ f7 of scalar as obtained 

meas·. - comp. from the triang. adjust. 
(m) (m) 

002-003 0 0 held fixed 
~Ill -7.3 ±2.8 
006-%5 -2.0* ±4.9 
06:HJ16 +9.3 ±5.1 
02~ +5.8 ±3.9 
032-'060 +8.5 ±4.6 
~ -5.1 -±5.2 

Sum +9.16 ±15.6l(u of Idl 
*The German Geodetic Research Institute gives for the 

baseline 006-065 a value which is 1.9 m larger than the one 
used here. The corresponding A values would then be only 1 
decimeter. 

Documentation 

002-003 
and 

00~111 

National Geodetic Survey 
(U.S.A.) 

National Geodetic Survey 
Triangulation Branch 
(U.S.A.) 

Office memos from NGS Triangulation Br. to 
Geodetic Research & Development Lab. for 002-
003-B. K. Meade dated 3/29ni. for 00~111 
John G. Gergen dated 8/5/73. 

006-%5 
06:Hll6 
OOIHJ16 

02~ 
032-'060 

06~ 

Geodetic Agencies of Norway, 
Sweden, Denmark, German 
Federal Republic, Austria, 
Italy 

Dept. of National 
Development, Division of 
National Mapping, 
Australia 

Department of Defense, 
Defense Mapping Agency 
and Institute Geographique 
Nationale (France) 

National Geodetic Survey 
(U.S.A.) Triangulation 
Branch 

Division of National Mapping, 
Australia 

Department of Anny, 
Commanding Officer, US 
Army Engineer 
Topographic Production 
Center (Code 14400), Anny 
Topographic Stations 
Wash., DC 20315 

Office memo from NGS Triangulation Br. to 
GRDL--B. K. Meade dated 4/9fi0. Office memo 
from NGS, New Datum Br. to GRDL--John G. 
Gergen dated 8/5/73. Further reference literature, 
the results of which were not used here: 
Computation of the European Baseline Tromso­
Catania by R. Kube and K. Schniidelbach, 
Deutsches Geodiitisches Forschungsinstitllt, 
Miinchen (1973). 

Dept. of National Development, Div. of National 
Mapping, Australia Technical Report No. 11 by 
K. Leppert, Canberra, Australia, March 1972, 
entitled "Two Australian Baselines for the Pageos 
World Triangulation." 

Transmittal letters to Dr. H. H. Schmid, GRDL, 
NGS, NOAA, Rockville, Md. 20852 U.S.A. dated 
June 4, 1971, and July 22, 1971. 

To obtain a measure for the precision of the 
strictly photogrammetric triangulation, a first trian­
gulation adjustment was executed with ouly the 
scalar between stations 002-003 enforced. This 
adjustment produced a sum of the squares of the 
weighted residuals in terms of plate coordinate 

The sum "i.d of the lengths of the measured scalars 
is 17,513,184 m, so that 

~ad Ld = 1:1, 911, 920 (312) 



HellmutH. Schmid 83 

As can be seen from table 8 the difference "i.Ad is 
only about 0.6 of the standard deviation associated 
with the sum of the triangulated distances. 

It was therefore concluded that the scalars, at 
least in their totality, are probably of higher 
accuracy than the geometric satellite triangulation 
itself. This conclusion is further evidenced when 
considering the standard errors for these scalars 
computed by the various computing centers. 

An adjustment where all scale lines were en­
forced with weights corresponding to an accuracy 
of one part in two million of their respective 
lengths gave the following resnlt as shown in table 
9. 

TABLE 9.-Corrections t.o baselines weighted 
1:2,000,000 in the adjustment 

Scalar 

002-003 
003-!ll 
O!J6-j)J6 
O!J6-j)65 

OIIHJ65 
023-060 
032-060 
063-064 

Assumed mean error 

(m) 

±1.75 
±0.72 
±1.78 
±1.23 
±0.60 
±1.15 
±1.58 
±1.75 

Correction from the 
adjustment 

(m) 

-0.06 
+1.50 
-0.26 
+0.10 
+0.42 
-0.98 
-2.76 
+2.60 

The [pvv] of this adjustment was 3.068 X 10-•, a 
value only 0.004 x 10-s units larger than in the 
single scalar adjustment mentioned above. This 
difference is only l/10 of the associated sigma. It 
can, therefore, be safely concluded that the sca­
lars do not exercise undue constraint on the 
triangulation system. 

If all 8 scalars are rigorously enforced the [pvv] 
sum increases to 3.071 X 10-8, a solution which is 
equally defensible from a statistical standpoint. 

The numerical solution is iterated on the CDC 
6600 computer (usually three times) until the max­
imum increment to the triangulated coordinates be­
comes <l mm. Mnltiplying the normal equations 
matrix pertaining to the final iteration by its corres­
ponding inverse matrix one obtains, as a check, the 
expected unit matrix to within a unit in the lOth 
decimal place. 

For all these solutions the mean error of unit 
weight after adjustment is 1.830 ± 0.014 against 
the expectation of 1.0, indicating the presence of 
additional unmodeled error sources. If the increase 
in the overall error budget can be ascribed to 
additi,tnal random error sources then the effect is 
relatively harmless, resulting only in a correspond­
ing increase in the mean errors of the triangulated 
station position•. But if the effect of systema:.c 

errors (which are distributed in the adjustment in 
accordance w~th the least squares principle) is 
involved, the situation is more serious. 

To gain some insight into the stability of the 
camera during the average half-hour period 
of operation, star photographs taken immedi­
ately before and after the satellite transit were 
adjusted and sets of camera orientation parameters 
computed. Thus for each plate the change in 
azimuth M and in elevation AH of the central ray 
with a corresponding rotation component .6.x was 
computed. The Ax are random and completely 
~ithin the range of their mean errors. The M cos 
H and, especially, the Ml component, however, 
indicate the influence of a systematic error, as 
shown in the following diagrams (figs. 54 and 55). 
For an evaluation of the diagrams it should be 
added that the individual A values shown have an 
average mean error of ±0':5. Since star imagery is 
also available for the satellite transit period it is 
possible to study these systematic changes in 
orientation over the period of observation. A 
roughly linear trend with time is indicated. 

To eliminate this source of error, orientation 
parameters were used in the final adjustment, 
wherever possible, that were based solely on star 
images obtained during the period of actual satel­
lite transit. Still we cannot entirely escape the 
conclusion that the instability of the camera cre­
ates an additional error which, as the diagrams 
show, has a systematic component and acts as a 
source of additional accidental errors. 

For a further analysis of the results it is 
important to realize that in consequence of the 
interpolation of each event into the astronomic 
system, absolute directions are obtained. This 
means it is possible to triangulate the direction of 
the chord joining two adjacent stations in the net 
independently, i.e., with only the satellite passes 
observed from these two stations. Such computa­
tions were made for all 170 lines of the world net. 
In these adjustments, as well as in the final 
solution, all covariance matrices resulting from the 
individual processing steps were included, so that 
all resnlts can be considered rigorously derived 
values. The line triangulations yield an average 
mean value for the ratio of mean error of unit 
weight before and after adjustment of 1:1.746, with 
a range of from 1:0.706 to 1:2.429. The theoretical 
expected average value is of course' l:l. This 
means that the observed data do not completely 
fill the accuracy expectations computed in the 
above dted partial analyses, a fact that was 
already mentioned in connection with the obtained 
mean error of unit weight ca.fter adjustment in the 
final triang,ulation. However, it is gratifying to note 
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Figure 54.-Plot of the increments in A cos E from pre- to post-calibration for a number of randomly selected events. in seconds of 
arc. The three segments are portions of a single graph. 

that this value increases only slightly from l. 746 
for the average of all individual line adjustments to 
1.830 for an adjustment bas.ed on the combination 
o.f all observations. These figures indicate that the 
entire body of data is apparently free of perturbing. 
systematic errors and satisfies with practically no 
constraint the three-dimensional geometrical clo­
sure condition of <he world net. 

In order to strengthen this conclusion a compari:­
son was n1ade between the directions derived from 
the individual line adjustments and those of. the 
combined soluti~·· . The individual resulting azi­
muth and eie•·ation angle differences are shown in 
the two followii.g diagrams (figs. 56 and 57) with 
their 3u errors and combined in histograms. 

Although these results do not fnlly meet ideal, 
statistical expectations it is not really possible to 
draw conclusions in any other way regarding the 
presence of possible systematic error influences in 
the triangulations of the individual lines. 

In order to analyze the accuracy of the shutter 
synchronization the following argument can be 
applied to the resnlts of the individual line adjust­
ments. Simple geometric considerations suggest 
that synchroriization discrepancies will lead to 
larger residual errors in th spatial triangulation 
the larger the angle is bet .. eiL the orbital plane of 
the satellite and the line tJ be triangulated. 
Bee l4se the Pageos satellite has an approximately 
polar orbit it is sufficient to plot the mean error of 
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Figure 55.-Plot of the increments in elevation from pre- to post-calibration for a number of randomly selected events. in seconds of 
arc. The three segments are portions of a single graph. 

unit wPight after adjustment for the individual line 
adjustments versus the a..:imuth, respectively azi­
muth -- 180°, of the trian?,ulated line. As figure 58 
shows, the distribution of these values iR circular 
and no dependence on azimuth can be detected. 

This test at least does not indicate the influence of 
any sync:&ronizaticm error~. 

An examination of the statistical distribution of 
the 29,104 residuals in the overall adjustment 
presents a further and obviously necessary oppor-
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Event a's vs Line Azimuths 
N 

s 

Figure 58.-Mean errors of unit weight u after single line adjustments plotted in azimuth of the line. 

tunity to analyze the data. Figures 59 and 60 are 
histograms of the residuals in events that were 
observed from two· and three stations respectively. 
In order to compare these distributions with their 
theoretical normal distribution curves the residuals 
would have to be normalized, rt"quiring the compu­
tation of the covariance matrix. 

(313) 

This is, in the present case, a 29,104 X 29,104 
completely filled square matrix, an obvious impos­
sibility. As a result we are forced to neglect the 
geometric content of the second term of the 
expression (313), and to normalize the residuals v 
approximately by dividing each with the mean 
error of the corresponding observation before ad­
justment. The greater the number of observations 
available for the determination of the position of 
the satellites or, in other words, the greater the 
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Figure 61.-R.M.S. of mean coordinate errors of adjusted station positions. 

number of stations observing the satellite, the 
niore acceptable is the proposed approximation for 
the normalization of the residuals. This may 
explain, at least in part, the fact that the fit of the 
normal curve to the histogram is better for the 
three station events. 

If ofle acCepts the mean error of unit weight 
after adjustment as a significant measure for the 
inherent observational accuracy, we have mean 
coordinate errors for the triangulated stations as 

shown in figure 61. 
It should be noted that although, qualitatively, the 
material at all stations is uniform, the quantity 
varies somewhat, resulting in the variations of the 
coordinate errors. 
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